Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Small Angle Neutron Scattering in Drug Discovery Research: A Novel Tool for Advanced Study of Structures of Biological Macromolecules

Author(s): Lokesh Adhikari, Himanshu Mishra, Mona Semalty and Ajay Semalty*

Volume 20, Issue 5, 2023

Published on: 19 June, 2023

Article ID: e150523216942 Pages: 18

DOI: 10.2174/1570163820666230515162614

Price: $65

Abstract

Small Angle Neutron Scattering (SANS) is a powerful and novel tool for the study of soft condensed matter, including the microscopic and nanomaterials used for drug discovery and delivery. The sample is exposed to a neutron beam, and neutron scattering occurs, which is studied as a function of the scattering angle to deduce a variety of information about the dynamics and structure of the material. The technique is becoming very popular in biomedical research to investigate the various aspects of structural biology. The low-resolution information on large heterogeneous, solubilized biomacromolecular complexes in solution is obtained with the use of deuterium labelling and solvent contrast variation. The article reviews the basics of the SANS technique, its applications in drug delivery research, and its current status in biomedical research. The article covers and overviews the precise characterization of biological structures (membranes, vesicles, proteins in solution), mesoporous structures, colloids, and surfactants, as well as cyclodextrin complexes, lipid complexes, polymeric nanoparticles, etc., with the help of neutron scattering. SANS is continuously evolving as a medium for exploring the complex world of biomolecules, providing information regarding the structure, composition, and arrangement of various constituents. With improving modelling software automation in data reduction and the development of new neutron research facilities, SANS can be expected to remain mainstream for biomedical research.

Keywords: Neutron scattering, SANS, nanoparticles, scattering, solid state, macromolecular.

Graphical Abstract
[1]
Robinson CV, Sali A, Baumeister W. The molecular sociology of the cell. Nature 2007; 450(7172): 973-82.
[http://dx.doi.org/10.1038/nature06523] [PMID: 18075576]
[2]
Semalty A. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: A critical and meta-analysis. Expert Opin Drug Deliv 2014; 11(8): 1255-72.
[http://dx.doi.org/10.1517/17425247.2014.916271] [PMID: 24909802]
[3]
Semalty A, Semalty M, Rawat BS, Singh D, Rawat MSM. Pharmacosomes: The lipid-based new drug delivery system. Expert Opin Drug Deliv 2009; 6(6): 599-612.
[http://dx.doi.org/10.1517/17425240902967607] [PMID: 19519287]
[4]
Adhikari L, Semalty M, Naruka PS, Aswal VK, Semalty A. Binary complexes of glimepiride with β-cyclodextrin for improved solubility and drug delivery. Indian Drugs 2019; 56(2)
[http://dx.doi.org/10.53879/id.56.03.11714]
[5]
Schelten J, Schlecht P, Schmatz W, Mayer A. Neutron small angle scattering of hemoglobin. J Biol Chem 1972; 247(17): 5436-41.
[http://dx.doi.org/10.1016/S0021-9258(20)81124-7] [PMID: 5055775]
[6]
Stuhrmann HB, Koch MH, Parfait R, Haas J, Ibel K, Crichton RR. Shape of the 50S subunit of Escherichia coli ribosomes. Proc Natl Acad Sci 1977; 74(6): 2316-20.
[http://dx.doi.org/10.1073/pnas.74.6.2316] [PMID: 329279]
[7]
Ramakrishnan V, Capel M, Kjeldgaard M, Engelman DM, Moore PB. Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol 1984; 174(2): 265-84.
[http://dx.doi.org/10.1016/0022-2836(84)90338-3] [PMID: 6371250]
[8]
Capel MS, Kjeldgaard M, Engelman DM, Moore PB. Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol 1988; 200(1): 65-87.
[http://dx.doi.org/10.1016/0022-2836(88)90334-8] [PMID: 3288761]
[9]
Zhao J, Hoye E, Boylan S, Walsh DA, Trewhella J. Quaternary structures of a catalytic subunit-regulatory subunit dimeric complex and the holoenzyme of the cAMP-dependent protein kinase by neutron contrast variation. J Biol Chem 1998; 273(46): 30448-59.
[http://dx.doi.org/10.1074/jbc.273.46.30448] [PMID: 9804812]
[10]
Heller WT, Vigil D, Brown S, Blumenthal DK, Taylor SS, Trewhella J. C subunits binding to the protein kinase A RI α dimer induce a large conformational change. J Biol Chem 2004; 279(18): 19084-90.
[http://dx.doi.org/10.1074/jbc.M313405200] [PMID: 14985329]
[11]
Zhao J, Wang J, Chen DJ, Peterson SR, Trewhella J. The solution structure of the DNA double-stranded break repair protein Ku and its complex with DNA: A neutron contrast variation study. Biochemistry 1999; 38(7): 2152-9.
[http://dx.doi.org/10.1021/bi9825246] [PMID: 10026299]
[12]
Chamberlain D, Keeley A, Aslam M, et al. A synthetic hollidayjunction is sandwiched between two tetrameric Mycobacteriumleprae RuvA structures in solution: New insights from neutronscattering contrast variation and modelling 1 1Edited by M. F. Moody. J Mol Bio 1998; 284(2): 385-400.
[http://dx.doi.org/10.1006/jmbi.1998.2177] ] [PMID: 9813125]
[13]
ISIS Small angle scattering. Available from: https://www.isis. stfc.ac.uk/Pages/ Small-angle-scattering.aspx.*
[14]
Chen JCH, Unkefer CJ. Fifteen years of the protein crystallography station: The coming of age of macromolecular neutron crystallography. IUCrJ 2017; 4(1): 72-86.
[http://dx.doi.org/10.1107/S205225251601664X] [PMID: 28250943]
[15]
Boualem Hammouda Available from : https://www.ncnr.nist.gov/staff/hammouda/
[16]
Mahieu E, Gabel F. Biological small-angle neutron scattering: Recent results and development. Acta Crystallogr Sect Struct Biol 2018; 74: 715-26.
[http://dx.doi.org/10.1107/S2059798318005016]
[17]
Penfold J, Tucker IM. Large-scale structures. In: Experimental Methods in the Physical Sciences. Elsevier 2013; pp. 353-413.
[18]
Pynn R. Neutron scattering: A primer. Los Alamos Sci 1990; 19: 1-31.
[19]
Whitten AE, Jacques DA, Hammouda B, et al. The structure of the KinA-Sda complex suggests an allosteric mechanism of histidine kinase inhibition. J Mol Biol 2007; 368(2): 407-20.
[http://dx.doi.org/10.1016/j.jmb.2007.01.064] [PMID: 17350039]
[20]
Hengesbach M, Schwalbe H. Structural basis for regulation of ribosomal RNA 2′-o-methylation. Angew Chem Int Ed 2014; 53(7): 1742-4.
[http://dx.doi.org/10.1002/anie.201309604] [PMID: 24382648]
[21]
Márquez V, Wilson DN, Nierhaus KH. Functions and interplay of the tRNA-binding sites of the ribosome. Biochem Soc Trans 2002; 30(2): 133-40.
[http://dx.doi.org/10.1042/bst0300133] [PMID: 12023840]
[22]
Svergun DI, Nierhaus KH. A map of protein-rRNA distribution in the 70 S Escherichia coli ribosome. J Biol Chem 2000; 275(19): 14432-9.
[http://dx.doi.org/10.1074/jbc.275.19.14432] [PMID: 10799526]
[23]
Oliver RC, Naing S-H, Weiss KL, et al. Contrast-matching detergent in small-angle neutron scattering experiments for membrane protein structural analysis and ab initio modeling. J Vis Exp JoVE 2018; (140): 57901.
[24]
Breyton C, Gabel F, Lethier M, et al. Small angle neutron scattering for the study of solubilised membrane proteins. Eur Phys J E 2013; 36(7): 71.
[http://dx.doi.org/10.1140/epje/i2013-13071-6] [PMID: 23852580]
[25]
Gabel F. Applications of SANS to study membrane protein systems. Adv Exp Med Biol 2017; 1009: 201-14.
[http://dx.doi.org/10.1007/978-981-10-6038-0_12] [PMID: 29218561]
[26]
Jeffries CM, Graewert MA, Blanchet CE, Langley DB, Whitten AE, Svergun DI. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 2016; 11(11): 2122-53.
[http://dx.doi.org/10.1038/nprot.2016.113] [PMID: 27711050]
[27]
Wollan EO, Shull CG. The diffraction of neutrons by crystalline powders. Phys Rev 1948; 73(8): 830-41.
[http://dx.doi.org/10.1103/PhysRev.73.830]
[28]
Jacrot B. The study of biological structures by neutron scattering from solution. Rep Prog Phys 1976; 39(10): 911-53.
[http://dx.doi.org/10.1088/0034-4885/39/10/001]
[29]
Cusack S, Ruigrok RWH, Krygsman PCJ, Mellema JE. Structure and composition of influenza virus. J Mol Biol 1985; 186(3): 565-82.
[http://dx.doi.org/10.1016/0022-2836(85)90131-7] [PMID: 4093979]
[30]
Inoue H, Timmins PA. The structure of rice dwarf virus determined by small-angle neutron scattering measurements. Virology 1985; 147(1): 214-6.
[http://dx.doi.org/10.1016/0042-6822(85)90242-9] [PMID: 18640559]
[31]
Sato M, Sato-Miyamoto Y, Kameyama K, et al. Peripherally biased distribution of antigen proteins on the recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle: Structural characteristics revealed by small-angle neutron scattering using the contrast variation method. J Biochem 1995; 118(6): 1297-302.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a125022] [PMID: 8720150]
[32]
Krueger JK, Bishop NA, Blumenthal DK, et al. Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: A small-angle scattering study of binding and conformational transitions. Biochemistry 1998; 37(51): 17810-7.
[http://dx.doi.org/10.1021/bi981656w] [PMID: 9922147]
[33]
Krueger JK, Zhi G, Stull JT, Trewhella J. Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase. Biochemistry 1998; 37(40): 13997-4004.
[http://dx.doi.org/10.1021/bi981311d] [PMID: 9760234]
[34]
Madl T, Gabel F, Sattler M. NMR and small-angle scattering-based structural analysis of protein complexes in solution. J Struct Biol 2011; 173(3): 472-82.
[http://dx.doi.org/10.1016/j.jsb.2010.11.004] [PMID: 21074620]
[35]
Hennig J, Militti C, Popowicz GM, et al. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature 2014; 515(7526): 287-90.
[http://dx.doi.org/10.1038/nature13693] [PMID: 25209665]
[36]
Lapinaite A, Simon B, Skjaerven L, Rakwalska-Bange M, Gabel F, Carlomagno T. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 2013; 502(7472): 519-23.
[http://dx.doi.org/10.1038/nature12581] [PMID: 24121435]
[37]
van der Maarel JRC, Guttula D, Arluison V, Egelhaaf SU, Grillo I, Forsyth VT. Structure of the H-NS–DNA nucleoprotein complex. Soft Matter 2016; 12(15): 3636-42.
[http://dx.doi.org/10.1039/C5SM03076E] [PMID: 26976786]
[38]
Johansen NT, Pedersen MC, Porcar L, Martel A, Arleth L. Introducing SEC–SANS for studies of complex self-organized biological systems. Acta Crystallogr D Struct Biol 2018; 74(12): 1178-91.
[http://dx.doi.org/10.1107/S2059798318007180] [PMID: 30605132]
[39]
Crupi V, Fontana A, Giarola M, et al. Cyclodextrin-complexation effects on the low-frequency vibrational dynamics of ibuprofen by combined inelastic light and neutron scattering experiments. J Phys Chem B 2013; 117(14): 3917-26.
[http://dx.doi.org/10.1021/jp400509r] [PMID: 23509855]
[40]
Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev 2007; 59(6): 379-402.
[http://dx.doi.org/10.1016/j.addr.2007.04.013] [PMID: 17658653]
[41]
Guo M, Jiang M, Zhang G. Surface modification of polymeric vesicles via host-guest inclusion complexation. Langmuir 2008; 24(19): 10583-6.
[http://dx.doi.org/10.1021/la802126w] [PMID: 18720956]
[42]
Matei I, Nicolae A, Hillebrand M. Fluorimetric and molecular mechanics study of the inclusion complex of 2-quinoxalinyl-phenoxathiin with β-cyclodextrin. J Incl Phenom Macrocycl Chem 2007; 57(1-4): 597-601.
[http://dx.doi.org/10.1007/s10847-006-9278-8]
[43]
Joset A, Grammenos A, Hoebeke M, Leyh B. Small-Angle Neutron Scattering investigation of cholesterol-doped DMPC liposomes interacting with β-cyclodextrin. J Incl Phenom Macrocycl Chem 2016; 84(1-2): 153-61.
[http://dx.doi.org/10.1007/s10847-015-0592-x]
[44]
Serra-Gómez R, Dreiss CA, González-Benito J, González-Gaitano G. Structure and rheology of poloxamine T1107 and its nanocomposite hydrogels with cyclodextrin-modified barium titanate nanoparticles. Langmuir 2016; 32(25): 6398-408.
[http://dx.doi.org/10.1021/acs.langmuir.6b01544] [PMID: 27245639]
[45]
Luo Z, Marson D, Ong QK, et al. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nat Commun 2018; 9(1): 1343.
[http://dx.doi.org/10.1038/s41467-018-03699-7] [PMID: 29632331]
[46]
Truzzi E, Meneghetti F, Mori M, et al. Drugs/lamellae interface influences the inner structure of double-loaded liposomes for inhaled anti-TB therapy: An in-depth small-angle neutron scattering investigation. J Colloid Interface Sci 2019; 541: 399-406.
[http://dx.doi.org/10.1016/j.jcis.2019.01.094] [PMID: 30710822]
[47]
Sochor B, Düdükcü Ö, Lübtow MM, Schummer B, Jaksch S, Luxenhofer R. Probing the complex loading-dependent structural changes in ultrahigh drug-loaded polymer micelles by small-angle neutron scattering. Langmuir 2020; 36(13): 3494-503.
[http://dx.doi.org/10.1021/acs.langmuir.9b03460] [PMID: 32203667]
[48]
Austwick MR, Clark B, Mosse CA, et al. Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes. J Biomed Opt 2010; 15(4): 047001.
[http://dx.doi.org/10.1117/1.3463005] [PMID: 20799832]
[49]
Martins ML, Dinitzen AB, Mamontov E, et al. Water dynamics in MCF-7 breast cancer cells: A neutron scattering descriptive study. Sci Rep 2019; 9(1): 8704.
[http://dx.doi.org/10.1038/s41598-019-45056-8] [PMID: 31213625]
[50]
Murthy NS, Wang W, Kamath Y. Structure of intermediate filament assembly in hair deduced from hydration studies using small-angle neutron scattering. J Struct Biol 2019; 206(3): 295-304.
[http://dx.doi.org/10.1016/j.jsb.2019.04.004] [PMID: 30951823]
[51]
Lee Y-T, Pozzo LD. Contrast-variation time-resolved small-angle neutron scattering analysis of oil-exchange kinetics between oil-in-water emulsions stabilized by anionic surfactants. Langmuir 2019; 35: 15192-203.
[http://dx.doi.org/10.1021/acs.langmuir.9b02423]
[52]
Koruza K, Lafumat B, Nyblom M, et al. Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX. Acta Crystallogr D Struct Biol 2019; 75(10): 895-903.
[http://dx.doi.org/10.1107/S2059798319010027] [PMID: 31588921]
[53]
Pipich V, Dickmann M, Frielinghaus H, et al. Morphology of thin film composite membranes explored by small-angle neutron scattering and positron-annihilation lifetime spectroscopy. Membranes 2020; 10(3): 48.
[http://dx.doi.org/10.3390/membranes10030048] [PMID: 32197524]
[54]
Koutsioubas A. Low-resolution structure of detergent-solubilized membrane proteins from small-angle scattering data. Biophys J 2017; 113(11): 2373-82.
[http://dx.doi.org/10.1016/j.bpj.2017.10.003] [PMID: 29211991]
[55]
Wright DW, Perkins SJ. SCT: A suite of programs for comparing atomistic models with small-angle scattering data. J Appl Cryst 2015; 48(3): 953-61.
[http://dx.doi.org/10.1107/S1600576715007062] [PMID: 26089768]
[56]
Spinozzi F, Ferrero C, Ortore MG, De Maria Antolinos A, Mariani P. GENFIT: Software for the analysis of small-angle X-ray and neutron scattering data of macromolecules in solution. J Appl Cryst 2014; 47(3): 1132-9.
[http://dx.doi.org/10.1107/S1600576714005147] [PMID: 24904247]
[57]
Tjioe E, Heller WT. ORNL_SAS: Software for calculation of small-angle scattering intensities of proteins and protein complexes. J Appl Cryst 2007; 40(4): 782-5.
[http://dx.doi.org/10.1107/S002188980702420X]
[58]
Sarachan KL, Curtis JE, Krueger S. Small-angle scattering contrast calculator for protein and nucleic acid complexes in solution. J Appl Cryst 2013; 46(6): 1889-93.
[http://dx.doi.org/10.1107/S0021889813025727]
[59]
Hofmann A, Whitten AE. Two practical Java software tools for small-angle X-ray scattering analysis of biomolecules. J Appl Cryst 2014; 47(2): 810-5.
[http://dx.doi.org/10.1107/S1600576714004737]
[60]
Franke D, Petoukhov MV, Konarev PV, et al. ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Cryst 2017; 50(4): 1212-25.
[http://dx.doi.org/10.1107/S1600576717007786] [PMID: 28808438]
[61]
Biehl R. Jscatter, a program for evaluation and analysis of experimental data. PLoS One 2019; 14(6): e0218789.
[http://dx.doi.org/10.1371/journal.pone.0218789] [PMID: 31233549]
[62]
Saha D, Kumar S, Ray D, Kohlbrecher J, Aswal VK. Role of physicochemical parameters associated with the hydrophobic vs. amphiphilic biodegradable polymer nanoparticles formation. J Mol Liq 2020; 318: 113977.
[http://dx.doi.org/10.1016/j.molliq.2020.113977]
[63]
Parekh P, Ohno S, Yusa S, et al. Synthesis, aggregation and adsorption behaviour of a thermoresponsive pentablock copolymer. Polym Int 2020; 69(11): 1113-21.
[http://dx.doi.org/10.1002/pi.5967]
[64]
Tiwari P, Ranjan R, Das K, Bohidar H, Aswal VK, Arfin N. Exfoliation and gelation in laponite–carboxymethyl cellulose complexes and its application in sustained drug release. Polym Bull 2020; 77(10): 5389-406.
[http://dx.doi.org/10.1007/s00289-019-03019-z]
[65]
Ganguly R, Kumar S, Kunwar A, et al. Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels. J Mol Liq 2020; 314: 113591.
[http://dx.doi.org/10.1016/j.molliq.2020.113591]
[66]
Rajput SM, Kuddushi M, Shah A, et al. Functionalized surfactant based catanionic vesicles as the soft template for the synthesis of hollow silica nanospheres as new age drug carrier. Surf Interfaces 2020; 20: 100596.
[http://dx.doi.org/10.1016/j.surfin.2020.100596]
[67]
Kuddushi M, Ray D, Aswal V, Hoskins C, Malek N. Poly(vinyl alcohol) and functionalized ionic liquid-based smart hydrogels for doxorubicin release. ACS Appl Bio Mater 2020; 3(8): 4883-94.
[http://dx.doi.org/10.1021/acsabm.0c00393] [PMID: 35021732]
[68]
Valencia L, Nomena EM, Monti S, et al. Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials’ properties. Nanoscale 2020; 12(29): 15652-62.
[http://dx.doi.org/10.1039/D0NR02888F] [PMID: 32496493]
[69]
Ganguly R, Kumar S, Tripathi A, et al. Structural and therapeutic properties of Pluronic® P123/F127 micellar systems and their modulation by salt and essential oil. J Mol Liq 2020; 310: 113231.
[http://dx.doi.org/10.1016/j.molliq.2020.113231]
[70]
Rajput SM, Mondal K, Kuddushi M, et al. Formation of hydrotropic drug/gemini surfactant based catanionic vesicles as efficient nano drug delivery vehicles. Colloid Interface Sci Commun 2020; 37: 100273.
[http://dx.doi.org/10.1016/j.colcom.2020.100273]
[71]
Kuddushi M, Patel NK, Gawali SL, et al. Thermo-switchable de novo ionogel as metal absorbing and curcumin loaded smart bandage material. J Mol Liq 2020; 306: 112922.
[http://dx.doi.org/10.1016/j.molliq.2020.112922]
[72]
Patil R, Marathe D, Roy SP, et al. Colloidal stability of graphene oxide nanosheets in association with triblock copolymers: A neutron scattering analysis. Mater Sci Eng C 2020; 109: 110559.
[http://dx.doi.org/10.1016/j.msec.2019.110559] [PMID: 32228907]
[73]
Kumari S, Halder S, Aggrawal R, Aswal VK, Sundar G, Saha SK. Refolding of protein unfolded by gemini surfactants using β-cyclodextrin and sodium dodecyl sulfate in aqueous medium: Study on role of spacer chain of surfactants. J Mol Liq 2020; 300: 112238.
[http://dx.doi.org/10.1016/j.molliq.2019.112238]
[74]
Bhatt Mitra J, Sharma VK, Mukherjee A, Garcia Sakai V, Dash A, Kumar M. Ubiquicidin-derived peptides selectively interact with the anionic phospholipid membrane. Langmuir 2020; 36(1): 397-408.
[http://dx.doi.org/10.1021/acs.langmuir.9b03243] [PMID: 31793791]
[75]
Sarkar D, Khare D, Kaushal A, et al. Green and scalable synthesis of nanosilver loaded silica microparticles by spray-drying: Application as antibacterial agent, catalyst and SERS substrate. Appl Nanosci 2019; 9(8): 1925-37.
[http://dx.doi.org/10.1007/s13204-019-01031-3]
[76]
Kumar M, Abbas S, Choughule LS, et al. Design and developmentof multi 1-dimensional position sensitive detectors housingshieldingsetup for small angle neutron scattering instrument at Dhruva. AIP Conf Proc 2019; 2115-030214.
[http://dx.doi.org/10.1063/1.5113053]
[77]
Rao BN, Sastry PU, Jana T. Structure-property relationships of ferrocene functionalized segmented polyurethane. Eur Polym J 2019; 115: 201-11.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.03.039]
[78]
Ganguly R, Kumar S, Nath S, Aswal VK. Salt and phytochemical assisted modulation of self-assembly characteristics of Polysorbate-80 in aqueous medium. Int J Pharm 2019; 563: 63-70.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.055] [PMID: 30935912]
[79]
Shukla A, Singh AP, Ray B, Aswal V, Kar AG, Maiti P. Efficacy of polyurethane graft on cyclodextrin to control drug release for tumor treatment. J Colloid Interface Sci 2019; 534: 215-27.
[http://dx.doi.org/10.1016/j.jcis.2018.09.032] [PMID: 30227378]
[80]
Saikia K, Bhattacharya K, Sen D, et al. Solvent evaporation driven entrapment of magnetic nanoparticles in mesoporous frame for designing a highly efficient MRI contrast probe. Appl Surf Sci 2019; 464: 567-76.
[http://dx.doi.org/10.1016/j.apsusc.2018.09.117]
[81]
Hirlekar S, Ray D, Aswal VK, Prabhune A, Nisal A, Ravindranathan S. Silk fibroin–sodium dodecyl sulfate gelation: Molecular, structural, and rheological insights. Langmuir 2019; 35(46): 14870-8.
[http://dx.doi.org/10.1021/acs.langmuir.9b02402] [PMID: 31625756]
[82]
Gawali SL, Zhang M, Kumar S, et al. Discerning the structure factor of charged micelles in water and supercooled solvent by contrast variation x-ray scattering. Langmuir 2019; 35(30): 9867-77.
[http://dx.doi.org/10.1021/acs.langmuir.9b00912] [PMID: 31271288]
[83]
John J, Ray D, Aswal VK, Deshpande AP, Varughese S. Dissipation and strain-stiffening behavior of pectin–Ca gels under LAOS. Soft Matter 2019; 15(34): 6852-66.
[http://dx.doi.org/10.1039/C9SM00709A] [PMID: 31410439]
[84]
Mora AK, Basu A, Kalel R, Nath S. Polymer-assisted drug sequestration from plasma protein by a surfactant with curtailed denaturing capacity. Phys Chem Chem Phys 2019; 21(13): 7127-36.
[http://dx.doi.org/10.1039/C8CP03576H] [PMID: 30887975]
[85]
Das P, Ganguly S, Bose M, et al. Surface quaternized nanosensor as a one-arrow-two-hawks approach for fluorescence turn “on–off–on” bifunctional sensing and antibacterial activity. New J Chem 2019; 43(16): 6205-19.
[http://dx.doi.org/10.1039/C8NJ06308G]
[86]
Kaur M, Singh G, Damarla K, et al. Aqueous systems of a surface active ionic liquid having an aromatic anion: Phase behavior, exfoliation of graphene flakes and its hydrogelation. Phys Chem Chem Phys 2020; 22(1): 169-78.
[http://dx.doi.org/10.1039/C9CP04449C] [PMID: 31793955]
[87]
Ansari SM, Sinha BB, Pai KR, et al. Controlled surface/interface structure and spin enabled superior properties and biocompatibility of cobalt ferrite nanoparticles. Appl Surf Sci 2018; 459: 788-801.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.063]
[88]
Chakraborty S, Ray D, Aswal VK, Ghosh S. Multi-stimuli-responsive directional assembly of an amphiphilic donor-acceptor alternating supramolecular copolymer. Chemistry 2018; 24(61): 16379-87.
[http://dx.doi.org/10.1002/chem.201803170] [PMID: 30112839]
[89]
Marwah M, Magarkar A, Ray D, Aswal V, Bunker A, Nagarsenker M. Glyceryl monostearate: Probing the self assembly of a lipid amenable to surface modification for hepatic targeting. J Phys Chem C 2018; 122(38): 22160-9.
[http://dx.doi.org/10.1021/acs.jpcc.8b05931]
[90]
Biswas A, Singh AP, Rana D, Aswal VK, Maiti P. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications. Nanoscale 2018; 10(21): 9917-34.
[http://dx.doi.org/10.1039/C8NR01438H] [PMID: 29770422]
[91]
Biswas A, Aswal VK, Ray B, Maiti P. Nanostructure-controlled shape memory effect in polyurethanes. J Phys Chem C 2018; 122(20): 11167-76.
[http://dx.doi.org/10.1021/acs.jpcc.8b02824]
[92]
Kumar S, Yadav I, Aswal VK, Kohlbrecher J. Structure and interaction of nanoparticle–protein complexes. Langmuir 2018; 34(20): 5679-95.
[http://dx.doi.org/10.1021/acs.langmuir.8b00110] [PMID: 29672062]
[93]
Lawrence MB, Abbas S, Aswal VK. Structure of polyvinyl alcohol-borax ferrogels: A small angle neutron scattering study. J Polym Res 2018; 25(2): 36.
[http://dx.doi.org/10.1007/s10965-017-1435-9]
[94]
Dubey P, Kumar S, Ravindranathan S, et al. pH dependent sophorolipid assemblies and their influence on gelation of silk fibroin protein. Mater Chem Phys 2018; 203: 9-16.
[http://dx.doi.org/10.1016/j.matchemphys.2017.09.045]
[95]
Yaseen Z, Aswal VK, Zhou X. Kabir-ud-Din K-D, Haider S. Morphological changes in human serum albumin in the presence of cationic amphiphilic drugs. New J Chem 2018; 42(3): 2270-7.
[http://dx.doi.org/10.1039/C7NJ02591B]
[96]
Kaushik P, Rawat K, Aswal VK, Kohlbrecher J, Bohidar HB. Mixing ratio dependent complex coacervation versus bicontinuous gelation of pectin with in situ formed zein nanoparticles. Soft Matter 2018; 14(31): 6463-75.
[http://dx.doi.org/10.1039/C8SM00809D] [PMID: 30051132]
[97]
Sonu HS, Halder S, Kumari S, Aggrawal R, Aswal VK, Saha SK. Study on interactions of cationic gemini surfactants with folded and unfolded bovine serum albumin: Effect of spacer group of surfactants. J Mol Liq 2017; 243: 369-79.
[http://dx.doi.org/10.1016/j.molliq.2017.07.122]
[98]
Ansari SM, Bhor RD, Pai KR, et al. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl Surf Sci 2017; 414: 171-87.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.002]
[99]
Biswas P, Sen D, Mazumder S, Melo JS, Basak CB, Dasgupta K. Porous nano-structured micro-granules from silica-milk bi-colloidal suspension: Synthesis and characterization. Colloids Surf B Biointerfaces 2017; 154: 421-8.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.048] [PMID: 28388528]
[100]
Ganguly R, Kunwar A, Dutta B, et al. Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids Surf B Biointerfaces 2017; 152: 176-82.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.023] [PMID: 28110039]
[101]
Pramanik P, Ray D, Aswal VK, Ghosh S. Supramolecularly engineered amphiphilic macromolecules: Molecular interaction overrules packing parameters. Angew Chem Int Ed 2017; 56(13): 3516-20.
[http://dx.doi.org/10.1002/anie.201611715] [PMID: 28211226]
[102]
Kalel R, Mora AK, Patro BS, Palit DK, Nath S. Synergistic enhancement in the drug sequestration power and reduction in the cytotoxicity of surfactants. Phys Chem Chem Phys 2017; 19(37): 25446-55.
[http://dx.doi.org/10.1039/C7CP05042A] [PMID: 28900634]
[103]
Patel DK, Gupta V, Dwivedi A, et al. Superior biomaterials using diamine modified graphene grafted polyurethane. Polymer 2016; 106: 109-19.
[http://dx.doi.org/10.1016/j.polymer.2016.10.060]
[104]
Pillai SA, Sheth U, Bahadur A, et al. Salt induced micellar growthin aqueous solutions of a star block copolymer Tetronic® 1304:Investigating the role in solubilizing, release and cytotoxicity of model drugs J Mol Liq 2016; PA: 303-10.
[http://dx.doi.org/10.1016/j.molliq.2016.09.091]
[105]
Dubey P, Kumar S, Aswal VK, et al. Silk fibroin-sophorolipid gelation: Deciphering the underlying mechanism. Biomacromolecules 2016; 17(10): 3318-27.
[http://dx.doi.org/10.1021/acs.biomac.6b01069] [PMID: 27643890]
[106]
Chappa S, Das S, Debnath AK, Sahu M, Saxena MK, Pandey AK. Spacer monomer in polymer chain influencing affinity of ethylene glycol methacrylate phosphate toward UO22+ and Pu4+ Ions. Ind Eng Chem Res 2016; 55(33): 8992-9002.
[http://dx.doi.org/10.1021/acs.iecr.6b01534]
[107]
Parekh P, Ohno S, Yusa S, et al. Surface and aggregation behavior of pentablock copolymer PNIPAM7 -F127-PNIPAM7 in aqueous solutions. J Phys Chem B 2016; 120(30): 7569-78.
[http://dx.doi.org/10.1021/acs.jpcb.6b03948] [PMID: 27385006]
[108]
Semalty A, Aswal VK. Small angle neutron scattering study of the interaction between drug and cyclodextrins in drug-cyclodextrin complexes Ser Annual Report. 2019; 34-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy