Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

FA-HA-Amygdalin@Fe2O3 and/or γ-Rays Affecting SIRT1 Regulation of YAP/TAZ-p53 Signaling and Modulates Tumorigenicity of MDA-MB231 or MCF-7 Cancer Cells

Author(s): Mohamed K. Abdel-Rafei*, Moustafa A. Askar, Khaled S. Azab*, Gharieb S. El-Sayyad*, Mohamed Abd El Kodous, Neama M. El Fatih, Ghada El Tawill and Noura M. Thabet

Volume 23, Issue 2, 2023

Published on: 07 September, 2022

Page: [118 - 144] Pages: 27

DOI: 10.2174/1568009622666220816123508

Price: $65

Abstract

Background: Breast cancer (BC) has a complex and heterogeneous etiology, and the emergence of resistance to conventional chemo-and radiotherapy results in unsatisfactory outcomes during BC treatment. Targeted nanomedicines have tremendous therapeutic potential in BC treatment over their free drug counterparts.

Objective: Hence, this study aimed to evaluate the newly fabricated pH-sensitive multifunctional FAHA- Amygdalin@Fe2O3 nano-core-shell composite (AF nanocomposite) and/or γ-radiation for effective localized BC therapy.

Methods: The physicochemical properties of nanoparticles were examined, including stability, selectivity, responsive release to pH, cellular uptake, and anticancer efficacy. MCF-7 and MDA-MB-231 cells were treated with AF at the determined IC50 doses and/or exposed to γ-irradiation (RT) or were kept untreated as controls. The antitumor efficacy of AF was proposed via assessing anti-proliferative effects, cell cycle distribution, apoptosis, and determination of the oncogenic effectors.

Results: In a bio-relevant medium, AF nanoparticles demonstrated extended-release characteristics that were amenable to acidic pH and showed apparent selectivity towards BC cells. The bioassays revealed that the HA and FA-functionalized AF markedly hindered cancer cell growth and enhanced radiotherapy (RT) through inducing cell cycle arrest (pre-G1 and G2/M) and increasing apoptosis, as well as reducing the tumorigenicity of BCs by inhibiting Silent information regulation factor 1 (SIRT1) and restoring p53 expression, deactivating the Yes-associated protein (YAP)/ Transcriptional coactivator with PDZ-binding motif (TAZ) signaling axis, and interfering with the tumor growth factor- β(TGF- β)/SMAD3 and HIF-1α/VEGF signaling hub while up-regulating SMAD7 protein expression.

Conclusion: Collectively, the novel AF alone or prior RT abrogated BC tumorigenicity.

Keywords: Amygdalin, iron oxide, nano-core-shell, radiation, YAP/TAZ, SIRT1, P53.

Graphical Abstract
[1]
Wu, P.; Sun, Y.; Dong, W.; Zhou, H.; Guo, S.; Zhang, L.; Wang, X.; Wan, M.; Zong, Y. Enhanced anti-tumor efficacy of hyaluronic acid modified nanocomposites combined with sonochemotherapy against subcutaneous and metastatic breast tumors. Nanoscale, 2019, 11(24), 11470-11483.
[http://dx.doi.org/10.1039/C9NR01691K] [PMID: 31124554]
[2]
Duffy, M.J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European group on tumor markers (EGTM). Eur. J. Cancer, 2017, 75, 284-298.
[http://dx.doi.org/10.1016/j.ejca.2017.01.017] [PMID: 28259011]
[3]
Singh, D.D.; Yadav, D.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines, 2021, 9(8), 876.
[http://dx.doi.org/10.3390/biomedicines9080876] [PMID: 34440080]
[4]
Saputra, E.C.; Huang, L.; Chen, Y.; Tucker-Kellogg, L. Combination therapy and the evolution of resistance: The theoretical merits of synergism and antagonism in cancer. Cancer Res., 2018, 78(9), 2419-2431.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1201] [PMID: 29686021]
[5]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[6]
Tran, S.; DeGiovanni, P-J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[7]
Nel, A.; Ruoslahti, E.; Meng, H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano, 2017, 11(10), 9567-9569.
[http://dx.doi.org/10.1021/acsnano.7b07214] [PMID: 29065443]
[8]
Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; Baglio, M.; Abbate, B.; Iacoviello, G.; Evangelista, G.; Gilardi, M.C.; Bondì, M.L.; Forte, G.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep., 2019, 9(1), 11134.
[http://dx.doi.org/10.1038/s41598-019-47553-2] [PMID: 31366901]
[9]
Wang, J-S.; Wang, H-J.; Qian, H-L. Biological effects of radiation on cancer cells. Mil. Med. Res., 2018, 5(1), 20.
[http://dx.doi.org/10.1186/s40779-018-0167-4] [PMID: 29958545]
[10]
Xu, Z.; Yan, Y.; Xiao, L.; Dai, S.; Zeng, S.; Qian, L.; Wang, L.; Yang, X.; Xiao, Y.; Gong, Z. Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS One, 2017, 12(4), e0175977.
[http://dx.doi.org/10.1371/journal.pone.0175977] [PMID: 28414793]
[11]
Penninckx, S.; Heuskin, A-C.; Michiels, C.; Lucas, S. Gold nanoparticles as a potent radiosensitizer: A transdisciplinary approach from physics to patient. Cancers (Basel), 2020, 12(8), 2021.
[http://dx.doi.org/10.3390/cancers12082021] [PMID: 32718058]
[12]
Mehrnia, S.S.; Hashemi, B.; Mowla, S.J.; Nikkhah, M.; Arbabi, A. Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles. Radiat. Oncol., 2021, 16(1), 33.
[http://dx.doi.org/10.1186/s13014-021-01751-3] [PMID: 33568174]
[13]
Liu, Y.; Zhang, P.; Li, F.; Jin, X.; Li, J.; Chen, W.; Li, Q. Metal-based nanoenhancers for future Radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics, 2018, 8(7), 1824-1849.
[http://dx.doi.org/10.7150/thno.22172] [PMID: 29556359]
[14]
Mi, Y.; Shao, Z.; Vang, J.; Kaidar-Person, O.; Wang, A.Z. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol., 2016, 7(1), 11.
[http://dx.doi.org/10.1186/s12645-016-0024-7] [PMID: 28066513]
[15]
Revia, R.A.; Zhang, M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances. Mater. Today, 2016, 19(3), 157-168.
[http://dx.doi.org/10.1016/j.mattod.2015.08.022] [PMID: 27524934]
[16]
Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2), 2436-2446.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[17]
Cazares-Cortes, E.; Espinosa, A.; Guigner, J.M.; Michel, A.; Griffete, N.; Wilhelm, C.; Ménager, C. Doxorubicin intracellular remote release from biocompatible oligo(ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia. ACS Appl. Mater. Interfaces, 2017, 9(31), 25775-25788.
[http://dx.doi.org/10.1021/acsami.7b06553] [PMID: 28723064]
[18]
Mazur, C.M.; Tate, J.A.; Strawbridge, R.R.; Gladstone, D.J.; Hoopes, P.J. Iron oxide nanoparticle enhancement of radiation cytotoxicity. Proc SPIE Int Soc Opt Eng, 2013, 8584, 85840.
[http://dx.doi.org/10.1117/12.2007701]
[19]
Al Shamsi, M.S.; Amin, A.; Adeghate, E. Beneficial effect of vitamin E on the metabolic parameters of diabetic rats. Mol. Cell. Biochem., 2004, 261(1-2), 35-42.
[http://dx.doi.org/10.1023/B:MCBI.0000028735.79172.9b] [PMID: 15362483]
[20]
Amin, A.; Hamza, A.A.; Daoud, S.; Hamza, W. Spirulina protects against cadmium-induced hepatotoxicity in rats. Am. J. Pharmacol. Toxicol., 2006, 1(2), 21-25.
[http://dx.doi.org/10.3844/ajptsp.2006.21.25]
[21]
Amin, A.; Mahmoud-Ghoneim, D. Texture analysis of liver fibrosis microscopic images: A study on the effect of biomarkers. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(3), 193-203.
[http://dx.doi.org/10.1093/abbs/gmq129] [PMID: 21258076]
[22]
El-Kharrag, R.; Amin, A.; Hisaindee, S.; Greish, Y.; Karam, S.M. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int. J. Oncol., 2017, 50(1), 212-222.
[http://dx.doi.org/10.3892/ijo.2016.3769] [PMID: 27878253]
[23]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed. Pharmacother., 2021, 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[24]
Murali, C.; Mudgil, P.; Gan, C-Y.; Tarazi, H.; El-Awady, R.; Abdalla, Y.; Amin, A.; Maqsood, S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep., 2021, 11(1), 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[25]
Liczbiński, P.; Bukowska, B. Molecular mechanism of amygdalin action in vitro: Review of the latest research. Immunopharmacol. Immunotoxicol., 2018, 40(3), 212-218.
[http://dx.doi.org/10.1080/08923973.2018.1441301] [PMID: 29486614]
[26]
El-Desouky, M.A.; Fahmi, A.A.; Abdelkader, I.Y.; Nasraldin, K.M. Anticancer effect of amygdalin (Vitamin B-17) on hepatocellular carcinoma cell line (HepG2) in the presence and absence of zinc. Anticancer. Agents Med. Chem., 2020, 20(4), 486-494.
[http://dx.doi.org/10.2174/1871520620666200120095525] [PMID: 31958042]
[27]
Liu, M.; Wang, B.; Guo, C.; Hou, X.; Cheng, Z.; Chen, D. Novel multifunctional triple folic acid, biotin and CD44 targeting pH-sensitive nano-actiniaes for breast cancer combinational therapy. Drug Deliv., 2019, 26(1), 1002-1016.
[http://dx.doi.org/10.1080/10717544.2019.1669734] [PMID: 31571501]
[28]
Jurczyk, M.; Jelonek, K. Musiał-Kulik, M.; Beberok, A.; Wrześniok, D.; Kasperczyk, J. Single- versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics, 2021, 13(3), 326.
[http://dx.doi.org/10.3390/pharmaceutics13030326] [PMID: 33802531]
[29]
Golombek, S.K.; May, J-N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[30]
Jin, X.; Wei, Y.; Xu, F.; Zhao, M.; Dai, K.; Shen, R.; Yang, S.; Zhang, N. SIRT1 promotes formation of breast cancer through modulating Akt activity. J. Cancer, 2018, 9(11), 2012-2023.
[http://dx.doi.org/10.7150/jca.24275] [PMID: 29896286]
[31]
Roth, M.; Chen, W.Y. Sorting out functions of sirtuins in cancer. Oncogene, 2014, 33(13), 1609-1620.
[http://dx.doi.org/10.1038/onc.2013.120] [PMID: 23604120]
[32]
Park, E.Y.; Woo, Y.; Kim, S.J.; Kim, D.H.; Lee, E.K.; De, U.; Kim, K.S.; Lee, J.; Jung, J.H.; Ha, K.T.; Choi, W.S.; Kim, I.S.; Lee, B.M.; Yoon, S.; Moon, H.R.; Kim, H.S. Anticancer effects of a new SIRT inhibitor, MHY2256, against human breast cancer MCF-7 cells via regulation of MDM2-p53 binding. Int. J. Biol. Sci., 2016, 12(12), 1555-1567.
[http://dx.doi.org/10.7150/ijbs.13833] [PMID: 27994519]
[33]
Goh, A.M.; Coffill, C.R.; Lane, D.P. The role of mutant p53 in human cancer. J. Pathol., 2011, 223(2), 116-126.
[http://dx.doi.org/10.1002/path.2784] [PMID: 21125670]
[34]
Dai, C.; Gu, W. p53 post-translational modification: Deregulated in tumorigenesis. Trends Mol. Med., 2010, 16(11), 528-536.
[http://dx.doi.org/10.1016/j.molmed.2010.09.002] [PMID: 20932800]
[35]
Yi, J.; Luo, J. SIRT1 and p53, effect on cancer, senescence and beyond. Biochim. Biophys. Acta, 2010, 1804(8), 1684-1689.
[http://dx.doi.org/10.1016/j.bbapap.2010.05.002] [PMID: 20471503]
[36]
Justice, R.W.; Zilian, O.; Woods, D.F.; Noll, M.; Bryant, P.J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev., 1995, 9(5), 534-546.
[http://dx.doi.org/10.1101/gad.9.5.534] [PMID: 7698644]
[37]
Fu, V.; Plouffe, S.W.; Guan, K.L. The Hippo pathway in organ development, homeostasis, and regeneration. Curr. Opin. Cell Biol., 2017, 49, 99-107.
[http://dx.doi.org/10.1016/j.ceb.2017.12.012] [PMID: 29316535]
[38]
Yao, C.B.; Zhou, X.; Chen, C.S.; Lei, Q.Y. The regulatory mechanisms and functional roles of the Hippo signaling pathway in breast cancer. Yi Chuan, 2017, 39(7), 617-629.
[http://dx.doi.org/10.16288/j.yczz.17-100] [PMID: 28757476]
[39]
Yuan, F.; Wang, J.; Li, R.; Zhao, X.; Zhang, Y.; Liu, B.; Lei, Y.; Hu, Y. A new regulatory mechanism between P53 And YAP crosstalk By SIRT1 mediated deacetylation to regulate cell cycle and apoptosis In A549 cell lines. Cancer Manag. Res., 2019, 11, 8619-8633.
[http://dx.doi.org/10.2147/CMAR.S214826] [PMID: 31576168]
[40]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[41]
Chen, C.; Lou, T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget, 2017, 8(28), 46691-46703.
[http://dx.doi.org/10.18632/oncotarget.17358] [PMID: 28493839]
[42]
Soni, S.; Padwad, Y.S. HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol., 2017, 56(4), 503-515.
[http://dx.doi.org/10.1080/0284186X.2017.1301680] [PMID: 28358664]
[43]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[44]
Xiang, L.; Gilkes, D.M.; Hu, H.; Luo, W.; Bullen, J.W.; Liang, H.; Semenza, G.L. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget, 2015, 6(14), 11768-11778.
[http://dx.doi.org/10.18632/oncotarget.4190] [PMID: 26059435]
[45]
Peng, J.; Wang, X.; Ran, L.; Song, J.; Luo, R.; Wang, Y. Hypoxia-inducible factor 1α regulates the transforming growth factor β1/SMAD family member 3 pathway to promote breast cancer progression. J. Breast Cancer, 2018, 21(3), 259-266.
[http://dx.doi.org/10.4048/jbc.2018.21.e42] [PMID: 30275854]
[46]
Nakao, A.; Afrakhte, M.; Morén, A.; Nakayama, T.; Christian, J.L.; Heuchel, R.; Itoh, S.; Kawabata, M.; Heldin, N.E.; Heldin, C.H.; ten Dijke, P. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature, 1997, 389(6651), 631-635.
[http://dx.doi.org/10.1038/39369] [PMID: 9335507]
[47]
He, W.; Li, A.G.; Wang, D.; Han, S.; Zheng, B.; Goumans, M.J.; Ten Dijke, P.; Wang, X.J. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J., 2002, 21(11), 2580-2590.
[http://dx.doi.org/10.1093/emboj/21.11.2580] [PMID: 12032071]
[48]
Sankadiya, S.; Oswal, N.; Jain, P.; Gupta, N. Synthesis and characterization of Fe2O3 nanoparticles by simple precipitation method. AIP Conference Proceedings 1724 AIP Publishing LLC; , 2016.
[http://dx.doi.org/10.1063/1.4945184]
[49]
Belavi, P.B.; Chavana, G.N.; Naika, L.R.; Somashekarb, R.; Kotnala, R.K. Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites. Mater. Chem. Phys., 2012, 132(1), 138-144.
[http://dx.doi.org/10.1016/j.matchemphys.2011.11.009]
[50]
Reheem, A.A.; Atta, A.; Maksoud, M.I.A. Low energy ion beam induced changes in structural and thermal properties of polycarbonate. Radiat. Phys. Chem., 2016, 127, 269-275.
[http://dx.doi.org/10.1016/j.radphyschem.2016.07.014]
[51]
Angelopoulou, A.; Kolokithas-Ntoukas, A.; Fytas, C.; Avgoustakis, K. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega, 2019, 4(26), 22214-22227.
[http://dx.doi.org/10.1021/acsomega.9b03594] [PMID: 31891105]
[52]
van de Loosdrecht, A.A.; Beelen, R.H.; Ossenkoppele, G.J.; Broekhoven, M.G.; Langenhuijsen, M.M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods, 1994, 174(1-2), 311-320.
[http://dx.doi.org/10.1016/0022-1759(94)90034-5] [PMID: 8083535]
[53]
Askar, M.A.; Thabet, N.M.; El-Sayyad, G.S.; El-Batal, A.I.; Abd Elkodous, M.; El Shawi, O.E.; Helal, H.; Abdel-Rafei, M.K. Dual hyaluronic acid and folic acid targeting pH-sensitive multifunctional 2DG@DCA@MgO-nano-core-shell-radiosensitizer for breast cancer therapy. Cancers (Basel), 2021, 13(21), 5571.
[http://dx.doi.org/10.3390/cancers13215571] [PMID: 34771733]
[54]
Najim, S.S. Determination of some trace elements in breast cancer serum by atomic absorption spectroscopy. Int. J. Chem., 2017, 9(1), 1-6.
[http://dx.doi.org/10.5539/ijc.v9n1p1]
[55]
Planeta, K.; Kubala-Kukus, A.; Drozdz, A.; Matusiak, K.; Setkowicz, Z.; Chwiej, J. The assessment of the usability of selected instrumental techniques for the elemental analysis of biomedical samples. Sci. Rep., 2021, 11(1), 3704.
[http://dx.doi.org/10.1038/s41598-021-82179-3] [PMID: 33580127]
[56]
Janic, B.; Liu, F.; Robbitt, K.R. Cellular uptake and radio-sensitization effect of small gold nanoparticles in MCF-7 breast cancer cells. J. Nanomed. Nanotechnol., 2018, 9(2), 1-13.
[http://dx.doi.org/10.4172/2157-7439.1000499]
[57]
ISO/ASTM E 51026. Practice for using the fricke dosimeter system; Available from: https://standards.iteh.ai/catalog/standards/iso/ 692200df-b3f5-44ab-9526-159f54f82c88/iso-astm51026-2015
[58]
Buch, K.; Peters, T.; Nawroth, T.; Sänger, M.; Schmidberger, H.; Langguth, P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT Assay--a comparative study. Radiat. Oncol., 2012, 7(1), 1-6.
[http://dx.doi.org/10.1186/1748-717X-7-1] [PMID: 22214341]
[59]
Kojima, K.; Takahashi, S.; Saito, S.; Endo, Y.; Nittami, T.; Nozaki, T.; Sobti, R.; Watanabe, M. Combined effects of Fe3O4 nanoparticles and chemotherapeutic agents on prostate cancer cells in vitro. Appl. Sci. (Basel), 2018, 8(1), 134.
[http://dx.doi.org/10.3390/app8010134]
[60]
Omar, H.A.; Sargeant, A.M.; Weng, J.R.; Wang, D.; Kulp, S.K.; Patel, T.; Chen, C.S. Targeting of the Akt-nuclear factor-κ B signaling network by [1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol (OSU-A9), a novel indole-3-carbinol derivative, in a mouse model of hepatocellular carcinoma. Mol. Pharmacol., 2009, 76(5), 957-968.
[http://dx.doi.org/10.1124/mol.109.058180] [PMID: 19706731]
[61]
Mingone, C.J.; Gupte, S.A.; Quan, S.; Abraham, N.G.; Wolin, M.S. Influence of heme and heme oxygenase-1 transfection of pulmonary microvascular endothelium on oxidant generation and cGMP. Exp. Biol. Med. (Maywood), 2003, 228(5), 535-539.
[http://dx.doi.org/10.1177/15353702-0322805-22] [PMID: 12709582]
[62]
Karade, V.C.; Parit, S.B.; Dawkar, V.V.; Devan, R.S.; Choudhary, R.J.; Kedge, V.V.; Pawar, N.V.; Kim, J.H.; Chougale, A.D. A green approach for the synthesis of α-Fe2O3 nanoparticles from Gardenia resinifera plant and it’s in vitro hyperthermia application. Heliyon, 2019, 5(7), e02044.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02044] [PMID: 31338465]
[63]
[64]
Tadic, M.; Panjan, M.; Tadic, B.V.; Lazovic, J.; Damnjanovic, V.; Kopani, M.; Kopanja, L. Magnetic properties of hematite (α− Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. J Electr Eng, 2019, 70(7), 71-76.
[http://dx.doi.org/10.2478/jee-2019-0044]
[65]
Fouad, D.E.; Zhang, C.; El-Didamony, H.; Yingnan, L.; Mekuria, T.D.; Shah, A.H. Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys., 2019, 12, 1253-1261.
[http://dx.doi.org/10.1016/j.rinp.2019.01.005]
[66]
Ashour, A.; El-Batal, A.I.; Maksoud, M.A.; El-Sayyad, G.S.; Labib, S.; Abdeltwab, E.; El-Okr, M.M. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology, 2018, 40, 141-151.
[http://dx.doi.org/10.1016/j.partic.2017.12.001]
[67]
Maksoud, M.I.A.A.; El-Sayyad, G.S.; Ashour, A.H.; El-Batal, A.I.; Elsayed, M.A.; Gobara, M.; El-Khawaga, A.M.; Abdel-Khalek, E.K.; El-Okr, M.M. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog., 2019, 127, 144-158.
[http://dx.doi.org/10.1016/j.micpath.2018.11.045] [PMID: 30502518]
[68]
Zipare, K.; Bandgar, S.; Shahane, G. Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles. J. Rare Earths, 2018, 36(1), 86-94.
[http://dx.doi.org/10.1016/j.jre.2017.06.011]
[69]
Shebanova, O.N.; Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem., 2003, 174(2), 424-430.
[http://dx.doi.org/10.1016/S0022-4596(03)00294-9]
[70]
Luo, Z.; Qin, C.; Wu, Y.; Xu, W.; Zhang, S.; Lu, A. Structure and properties of Fe2O3-doped 50Li2O-10B2O3-40P2O5 glass and glass-ceramic electrolytes. Solid State Ion., 2020, 345, 115177.
[http://dx.doi.org/10.1016/j.ssi.2019.115177]
[71]
He, Y.Y.; Wang, X.C.; Jin, P.K.; Zhao, B.; Fan, X. Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(4), 876-879.
[http://dx.doi.org/10.1016/j.saa.2008.12.021] [PMID: 19162536]
[72]
de Oliveira, S.A.; da Silva, B.C.; Riegel-Vidotti, I.C.; Urbano, A.; de Sousa Faria-Tischer, P.C.; Tischer, C.A. Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. Int. J. Biol. Macromol., 2017, 97, 642-653.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.077] [PMID: 28109811]
[73]
Thakur, A.; Vaidya, D.; Kaushal, M.; Gupta, A. Physicochemical properties, mineral composition, FTIR spectra and scanning electron microscopy of wild apricot kernel press cake. Int. J. Food Sci. Nutr., 2019, 4(2), 140-143.
[74]
Nasser, H.M.; El-Naggar, S.A.; El-Sayed Rizk, M.E-S.R.; Elmetwalli, A.; Salama, A.F. Effect of sorafenib on liver biochemistry prior to vitamin B17 coadministration in ehrlich ascites carcinoma mice model: Preliminary phase study. Biochem Lett, 2021, 17(1), 40-49.
[http://dx.doi.org/10.21608/blj.2021.184392]
[75]
Garg, U.K.; Kaur, M.P.; Garg, V.K.; Sud, D. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater., 2007, 140(1-2), 60-68.
[http://dx.doi.org/10.1016/j.jhazmat.2006.06.056] [PMID: 16879918]
[76]
Raouf, E.L.M.; Hammoud, K.K.; Mohammed, J.M.; Al-Dulimyi, E.M.K. Qualitative and quantitative determination of folic acid in tablets by FTIR spectroscopy. IJAPBC, 2014, 3(3), 773-780.
[77]
Reddy, K.J.; Karunakaran, K. Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7. J. Biosci. Biotechnol., 2013, 2(3), 173-179.
[78]
Jaszczak-Wilke, E. Polkowska, Ż Koprowski, M.; Owsianik, K.; Mitchell, A.E.; Bałczewski, P. Amygdalin: Toxicity, anticancer activity and analytical procedures for its determination in plant seeds. Molecules, 2021, 26(8), 2253.
[http://dx.doi.org/10.3390/molecules26082253] [PMID: 33924691]
[79]
Azmat, R.; Pervaiz, A.; Masood, S. Synthesis, Characterization, and Activity of Maghemite (γ-Fe2O3) Nanoparticles through a Facile Solvent Hydrothermal Phase Transformation of Fe2O3.Bhargava C, Sachdeva A Nanotechnology; CRC Press: Florida, 2020, pp. 277-294.
[http://dx.doi.org/10.1201/9781003082859-16]
[80]
El-Batal, A.I.; Al-Hazmi, N.E.; Farrag, A.A.; Elsayed, M.A.; El-Khawaga, A.M.; El-Sayyad, G.S.; Elshamy, A.A. Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism. Microb. Pathog., 2022, 164, 105440.
[http://dx.doi.org/10.1016/j.micpath.2022.105440] [PMID: 35143890]
[81]
Uppuluri, S.; Swanson, D.R.; Piehler, L.T.; Li, J.; Hagnauer, G.L.; Tomalia, D.A. Core–shell Tecto (dendrimers): I. Synthesis and characterization of saturated shell models. Adv. Mater., 2000, 12(11), 796-800.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200006)12:11<796:AID-ADMA796>3.0.CO;2-1]
[82]
Bonn, M.; Hunger, J. Between a hydrogen and a covalent bond. Science, 2021, 371(6525), 123-124.
[http://dx.doi.org/10.1126/science.abf3543] [PMID: 33414208]
[83]
Ivask, A.; Titma, T.; Visnapuu, M.; Vija, H.; Kakinen, A.; Sihtmae, M.; Pokhrel, S.; Madler, L.; Heinlaan, M.; Kisand, V.; Shimmo, R.; Kahru, A. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr. Top. Med. Chem., 2015, 15(18), 1914-1929.
[http://dx.doi.org/10.2174/1568026615666150506150109] [PMID: 25961521]
[84]
Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B, 2021, 11(8), 2265-2285.
[http://dx.doi.org/10.1016/j.apsb.2021.03.033] [PMID: 34522587]
[85]
Wang, Z.; Sau, S.; Alsaab, H.O.; Iyer, A.K. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. Nanomedicine, 2018, 14(4), 1441-1454.
[http://dx.doi.org/10.1016/j.nano.2018.04.004] [PMID: 29678787]
[86]
Bennie, L.; Belhout, S.A.; Quinn, S.J.; Coulter, J.A. Polymer-supported gold nanoparticle radiosensitizers with enhanced cellular uptake efficiency and increased cell death in human prostate cancer cells. ACS Appl. Nano Mater., 2020, 3(4), 3157-3162.
[http://dx.doi.org/10.1021/acsanm.0c00413]
[87]
Guo, Y.; Xu, H.; Li, Y.; Wu, F.; Li, Y.; Bao, Y.; Yan, X.; Huang, Z.; Xu, P. Hyaluronic acid and Arg-Gly-Asp peptide modified Graphene oxide with dual receptor-targeting function for cancer therapy. J. Biomater. Appl., 2017, 32(1), 54-65.
[http://dx.doi.org/10.1177/0885328217712110] [PMID: 28554233]
[88]
Zhuo, S.; Zhang, F.; Yu, J.; Zhang, X.; Yang, G.; Liu, X. PH-sensitive biomaterials for drug delivery. Molecules, 2020, 25(23), 5649.
[http://dx.doi.org/10.3390/molecules25235649] [PMID: 33266162]
[89]
Fard, A.E.; Tavakoli, M.B.; Salehi, H.; Emami, H. Synergetic effects of docetaxel and ionizing radiation reduced cell viability on MCF-7 breast cancer cell. Appl Cancer Res, 2017, 37(1), 29.
[http://dx.doi.org/10.1186/s41241-017-0035-7]
[90]
Islamian, J.P.; Aghaee, F.; Farajollahi, A.; Baradaran, B.; Fazel, M. Combined treatment with 2-deoxy-d-glucose and doxorubicin enhances the in vitro efficiency of breast cancer radiotherapy. Asian Pac. J. Cancer Prev., 2015, 16(18), 8431-8438.
[http://dx.doi.org/10.7314/APJCP.2015.16.18.8431] [PMID: 26745097]
[91]
Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487), eaaw5473.
[http://dx.doi.org/10.1126/science.aaw5473] [PMID: 32273439]
[92]
Zhang, C.; Liu, J.; Wu, R.; Liang, Y.; Lin, M.; Liu, J.; Chan, C.S.; Hu, W.; Feng, Z. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget, 2014, 5(14), 5535-5546.
[http://dx.doi.org/10.18632/oncotarget.2137] [PMID: 25114038]
[93]
Moore, R.L.; Faller, D.V. SIRT1 represses estrogen-signaling, ligand-independent ERα-mediated transcription, and cell proliferation in estrogen-responsive breast cells. J. Endocrinol., 2013, 216(3), 273-285.
[http://dx.doi.org/10.1530/JOE-12-0102] [PMID: 23169992]
[94]
Li, Z.; Qin, B.; Qi, X.; Mao, J.; Wu, D. Isoalantolactone induces apoptosis in human breast cancer cells via ROS-mediated mitochondrial pathway and downregulation of SIRT1. Arch. Pharm. Res., 2016, 39(10), 1441-1453.
[http://dx.doi.org/10.1007/s12272-016-0815-8] [PMID: 27600429]
[95]
Sun, Y.; Sun, D.; Li, F.; Tian, L.; Li, C.; Li, L.; Lin, R.; Wang, S. Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells. Lung Cancer, 2007, 58(1), 21-29.
[http://dx.doi.org/10.1016/j.lungcan.2007.05.013] [PMID: 17624472]
[96]
Xu, Y.; Qin, Q.; Chen, R.; Wei, C.; Mo, Q. SIRT1 promotes proliferation, migration, and invasion of breast cancer cell line MCF-7 by upregulating DNA polymerase delta1 (POLD1). Biochem. Biophys. Res. Commun., 2018, 502(3), 351-357.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.164] [PMID: 29807012]
[97]
Elibol, B.; Kilic, U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front. Endocrinol. (Lausanne), 2018, 9, 614.
[http://dx.doi.org/10.3389/fendo.2018.00614] [PMID: 30374331]
[98]
Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120.
[http://dx.doi.org/10.1016/j.cell.2006.05.036] [PMID: 16839880]
[99]
Badr El-Kholy, W.; Abdel-Rahman, S.A.; Abd El-Hady El-Safti, F.E.; Mohey Issa, N. Effect of vitamin B17 on experimentally induced colon cancer in adult male albino rat. Folia Morphol. (Warsz), 2021, 80(1), 158-169.
[http://dx.doi.org/10.5603/FM.a2020.0021] [PMID: 32073131]
[100]
Warburton, D.; Shi, W.; Xu, B. TGF-β-Smad3 signaling in emphysema and pulmonary fibrosis: An epigenetic aberration of normal development? Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 304(2), L83-L85.
[http://dx.doi.org/10.1152/ajplung.00258.2012] [PMID: 23161884]
[101]
Hong, E.H.; Lee, S.J.; Kim, J.S.; Lee, K.H.; Um, H.D.; Kim, J.H.; Kim, S.J.; Kim, J.I.; Hwang, S.G. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J. Biol. Chem., 2010, 285(2), 1283-1295.
[http://dx.doi.org/10.1074/jbc.M109.058628] [PMID: 19887452]
[102]
Ji, K.; Sun, X.; Liu, Y.; Du, L.; Wang, Y.; He, N.; Wang, J.; Xu, C.; Liu, Q. Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-κB/Smac pathway. Cell. Physiol. Biochem., 2018, 48(1), 304-316.
[http://dx.doi.org/10.1159/000491730] [PMID: 30016782]
[103]
Ortega, Á.; Vera, I.; Diaz, M.P.; Navarro, C.; Rojas, M.; Torres, W.; Parra, H.; Salazar, J.; De Sanctis, J.B.; Bermúdez, V. The YAP/TAZ signaling pathway in the tumor microenvironment and carcinogenesis: Current knowledge and therapeutic promises. Int. J. Mol. Sci., 2021, 23(1), 430.
[http://dx.doi.org/10.3390/ijms23010430] [PMID: 35008857]
[104]
Yu, F.X.; Zhao, B.; Guan, K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 2015, 163(4), 811-828.
[http://dx.doi.org/10.1016/j.cell.2015.10.044] [PMID: 26544935]
[105]
Maugeri-Saccà, M.; De Maria, R. The Hippo pathway in normal development and cancer. Pharmacol. Ther., 2018, 186, 60-72.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.011] [PMID: 29305295]
[106]
White, S.M.; Avantaggiati, M.L.; Nemazanyy, I.; Di Poto, C.; Yang, Y.; Pende, M.; Gibney, G.T.; Ressom, H.W.; Field, J.; Atkins, M.B.; Yi, C. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev. Cell, 2019, 49(3), 425-443.e9.
[http://dx.doi.org/10.1016/j.devcel.2019.04.014] [PMID: 31063758]
[107]
Vlug, E.J.; van de Ven, R.A.H.; Vermeulen, J.F.; Bult, P.; van Diest, P.J.; Derksen, P.W.B. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol. (Dordr.), 2013, 36(5), 375-384.
[http://dx.doi.org/10.1007/s13402-013-0143-7] [PMID: 23949920]
[108]
Andrade, D.; Mehta, M.; Griffith, J.; Panneerselvam, J.; Srivastava, A.; Kim, T.D.; Janknecht, R.; Herman, T.; Ramesh, R.; Munshi, A. YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways. Oncotarget, 2017, 8(58), 98495-98508.
[http://dx.doi.org/10.18632/oncotarget.21913] [PMID: 29228705]
[109]
Kim, C.L.; Shin, Y.S. Choi, SH Extracts of Perilla frutescens var. Acuta (Odash.) kudo leaves have antitumor effects on breast cancer cells by suppressing YAP activity. Evid Based Complementary Altern Med., 5619761, 2021, 13.
[http://dx.doi.org/10.1155/2021/5619761]
[110]
Qin, Z.; Xia, W.; Fisher, G.J.; Voorhees, J.J.; Quan, T. YAP/TAZ regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun. Signal., 2018, 16(1), 18.
[http://dx.doi.org/10.1186/s12964-018-0232-3] [PMID: 29695252]
[111]
Yan, X.; Liu, Z.; Chen, Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim. Biophys. Sin., 2009, 41(4), 263-272.
[http://dx.doi.org/10.1093/abbs/gmp018] [PMID: 19352540]
[112]
Sakabe, M.; Fan, J.; Odaka, Y.; Liu, N.; Hassan, A.; Duan, X.; Stump, P.; Byerly, L.; Donaldson, M.; Hao, J.; Fruttiger, M.; Lu, Q.R.; Zheng, Y.; Lang, R.A.; Xin, M. YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc. Natl. Acad. Sci. USA, 2017, 114(41), 10918-10923.
[http://dx.doi.org/10.1073/pnas.1704030114] [PMID: 28973878]
[113]
Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer, 2008, 8(12), 967-975.
[http://dx.doi.org/10.1038/nrc2540] [PMID: 18987634]
[114]
Zhao, C.; Zeng, C.; Ye, S.; Dai, X.; He, Q.; Yang, B.; Zhu, H. Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ): A nexus between hypoxia and cancer. Acta Pharm. Sin. B, 2020, 10(6), 947-960.
[http://dx.doi.org/10.1016/j.apsb.2019.12.010] [PMID: 32642404]
[115]
Ahluwalia, A.; Tarnawski, A.S. Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr. Med. Chem., 2012, 19(1), 90-97.
[http://dx.doi.org/10.2174/092986712803413944] [PMID: 22300081]
[116]
Wang, X.; Freire Valls, A.; Schermann, G.; Shen, Y.; Moya, I.M.; Castro, L.; Urban, S.; Solecki, G.M.; Winkler, F.; Riedemann, L.; Jain, R.K.; Mazzone, M.; Schmidt, T.; Fischer, T.; Halder, G.; Ruiz de Almodóvar, C. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell, 2017, 42(5), 462-478.e7.
[http://dx.doi.org/10.1016/j.devcel.2017.08.002] [PMID: 28867486]
[117]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[118]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[119]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[120]
Pefani, D.E.; Pankova, D.; Abraham, A.G.; Grawenda, A.M.; Vlahov, N.; Scrace, S.; O’ Neill, E. TGF-β targets the Hippo pathway scaffold RASSF1A to facilitate YAP/SMAD2 nuclear translocation. Mol. Cell, 2016, 63(1), 156-166.
[http://dx.doi.org/10.1016/j.molcel.2016.05.012] [PMID: 27292796]
[121]
El-Masry, T.; Al-Shaalan, N.; Tousson, E.; Buabeid, M.; Al-Ghadeer, A. Potential therapy of vitamin B17 against Ehrlich solid tumor induced changes in Interferon gamma, Nuclear factor kappa B, DNA fragmentation, p53, Bcl2, survivin, VEGF and TNF-α Expressions in mice. Pak. J. Pharm. Sci., 2020, 33, 393-401.
[http://dx.doi.org/10.36721/PJPS.2020.33.1.SUP.393-401.1] [PMID: 32122873]
[122]
Hlushchuk, R.; Riesterer, O.; Baum, O.; Wood, J.; Gruber, G.; Pruschy, M.; Djonov, V. Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am. J. Pathol., 2008, 173(4), 1173-1185.
[http://dx.doi.org/10.2353/ajpath.2008.071131] [PMID: 18787105]
[123]
Vincenti, S.; Brillante, N.; Lanza, V.; Bozzoni, I.; Presutti, C.; Chiani, F.; Etna, M.P.; Negri, R. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat. Res., 2011, 175(5), 535-546.
[http://dx.doi.org/10.1667/RR2200.1] [PMID: 21361781]
[124]
Thabet, N.M.; Moustafa, E.M. Synergistic effect of Ebselen and gamma radiation on breast cancer cells. Int. J. Radiat. Biol., 2017, 93(8), 784-792.
[http://dx.doi.org/10.1080/09553002.2017.1325024] [PMID: 28463038]
[125]
Na, K.; Cho, Y.; Choi, D.H.; Park, M.J.; Yang, J.H.; Chung, S. Gamma irradiation exposure for collapsed cell junctions and reduced angiogenesis of 3-D in vitro blood vessels. Sci. Rep., 2021, 11(1), 18230.
[http://dx.doi.org/10.1038/s41598-021-97692-8] [PMID: 34521931]
[126]
Xiang, G.L.; Zhu, X.H.; Lin, C.Z.; Wang, L.J.; Sun, Y.; Cao, Y.W.; Wang, F.F. 125I seed irradiation induces apoptosis and inhibits angiogenesis by decreasing HIF-1α and VEGF expression in lung carcinoma xenografts. Oncol. Rep., 2017, 37(5), 3075-3083.
[http://dx.doi.org/10.3892/or.2017.5521] [PMID: 28339070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy