Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Mesenchymal Epithelial Transition (MET): A Key Player in Chemotherapy Resistance and an Emerging Target for Potentiating Cancer Immunotherapy

Author(s): Kenneth K.W. To* and William C.S. Cho

Volume 22, Issue 4, 2022

Published on: 01 April, 2022

Page: [269 - 285] Pages: 17

DOI: 10.2174/1568009622666220307105107

Price: $65

Abstract

The MET protein is a cell surface receptor tyrosine kinase predominately expressed in epithelial cells. Upon binding of its only known ligand, hepatocyte growth factor (HGF), MET homodimerizes, phosphorylates, and stimulates intracellular signalling to drive cell proliferation. Amplification or hyperactivation of MET is frequently observed in various cancer types and it is associated with poor response to conventional and targeted chemotherapy. More recently, emerging evidence also suggests that MET/HGF signalling may play an immunosuppressive role and it could confer resistance to cancer immunotherapy. In this review, we summarized the preclinical and clinical evidence of MET’s role in drug resistance to conventional chemotherapy, targeted therapy, and immunotherapy. Previous clinical trials investigating MET-targeted therapy in unselected or METoverexpressing cancers yielded mostly unfavourable results. More recent clinical studies focusing on MET exon 14 alterations and MET amplification have produced encouraging treatment responses to MET inhibitor therapy. The translational relevance of MET inhibitor therapy to overcome drug resistance in cancer patients is discussed.

Keywords: Cancer immunotherapy, drug resistance, hepatocyte growth factor, MET amplification, MET inhibitor, tyrosine kinase.

Next »
Graphical Abstract
[1]
Fu, J.; Su, X.; Li, Z.; Deng, L.; Liu, X.; Feng, X.; Peng, J. HGF/c-MET pathway in cancer: From molecular characterization to clinical evidence. Oncogene, 2021, 40(28), 4625-4651.
[http://dx.doi.org/10.1038/s41388-021-01863-w] [PMID: 34145400]
[2]
Gentile, A.; Trusolino, L.; Comoglio, P.M. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev., 2008, 27(1), 85-94.
[http://dx.doi.org/10.1007/s10555-007-9107-6] [PMID: 18175071]
[3]
Chen, T.; You, Y.; Jiang, H.; Wang, Z.Z. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J. Cell. Physiol., 2017, 232(12), 3261-3272.
[http://dx.doi.org/10.1002/jcp.25797] [PMID: 28079253]
[4]
Matsumoto, K.; Funakoshi, H.; Takahashi, H.; Sakai, K. HGF-Met pathway in regeneration and drug discovery. Biomedicines, 2014, 2(4), 275-300.
[http://dx.doi.org/10.3390/biomedicines2040275] [PMID: 28548072]
[5]
Park, M.; Dean, M.; Cooper, C.S.; Schmidt, M.; O’Brien, S.J.; Blair, D.G.; Vande Woude, G.F. Mechanism of met oncogene activation. Cell, 1986, 45(6), 895-904.
[http://dx.doi.org/10.1016/0092-8674(86)90564-7] [PMID: 2423252]
[6]
Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45.
[http://dx.doi.org/10.1186/s12943-018-0796-y] [PMID: 29455668]
[7]
Huang, K.L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; Scott, A.D.; Krassowski, M.; Cherniack, A.D.; Houlahan, K.E.; Jayasinghe, R.; Wang, L.B.; Zhou, D.C.; Liu, D.; Cao, S.; Kim, Y.W.; Koire, A.; McMichael, J.F.; Hucthagowder, V.; Kim, T.B.; Hahn, A.; Wang, C.; McLellan, M.D.; Al-Mulla, F.; Johnson, K.J.; Lichtarge, O.; Boutros, P.C.; Raphael, B.; Lazar, A.J.; Zhang, W.; Wendl, M.C.; Govindan, R.; Jain, S.; Wheeler, D.; Kulkarni, S.; Dipersio, J.F.; Reimand, J.; Meric-Bernstam, F.; Chen, K.; Shmulevich, I.; Plon, S.E.; Chen, F.; Ding, L.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbrot, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Gonzalez, A.M.A.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Pinero, E.M.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. Pathogenic germline variants in 10,389 adult cancers. Cell, 2018, 173(2), 355-370.e14.
[http://dx.doi.org/10.1016/j.cell.2018.03.039] [PMID: 29625052]
[8]
Tode, N.; Kikuchi, T.; Sakakibara, T.; Hirano, T.; Inoue, A.; Ohkouchi, S.; Tamada, T.; Okazaki, T.; Koarai, A.; Sugiura, H.; Niihori, T.; Aoki, Y.; Nakayama, K.; Matsumoto, K.; Matsubara, Y.; Yamamoto, M.; Watanabe, A.; Nukiwa, T.; Ichinose, M. Exome sequencing deciphers a germline MET mutation in familial epidermal growth factor receptor-mutant lung cancer. Cancer Sci., 2017, 108(6), 1263-1270.
[http://dx.doi.org/10.1111/cas.13233] [PMID: 28294470]
[9]
Lutterbach, B.; Zeng, Q.; Davis, L.J.; Hatch, H.; Hang, G.; Kohl, N.E.; Gibbs, J.B.; Pan, B.S. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res., 2007, 67(5), 2081-2088.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3495] [PMID: 17332337]
[10]
Ozasa, H.; Oguri, T.; Maeno, K.; Takakuwa, O.; Kunii, E.; Yagi, Y.; Uemura, T.; Kasai, D.; Miyazaki, M.; Niimi, A. Significance of c-MET overexpression in cytotoxic anticancer drug-resistant small-cell lung cancer cells. Cancer Sci., 2014, 105(8), 1032-1039.
[http://dx.doi.org/10.1111/cas.12447] [PMID: 24827412]
[11]
Wood, G.E.; Hockings, H.; Hilton, D.M.; Kermorgant, S. The role of MET in chemotherapy resistance. Oncogene, 2021, 40(11), 1927-1941.
[http://dx.doi.org/10.1038/s41388-020-01577-5] [PMID: 33526881]
[12]
Dong, N.; Shi, X.; Wang, S.; Gao, Y.; Kuang, Z.; Xie, Q.; Li, Y.; Deng, H.; Wu, Y.; Li, M.; Li, J.L. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br. J. Cancer, 2019, 121(1), 22-33.
[http://dx.doi.org/10.1038/s41416-019-0482-x] [PMID: 31130723]
[13]
Lasagna, N.; Fantappiè, O.; Solazzo, M.; Morbidelli, L.; Marchetti, S.; Cipriani, G.; Ziche, M.; Mazzanti, R. Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res., 2006, 66(5), 2673-2682.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2290] [PMID: 16510587]
[14]
Awad, M.M. Impaired c-Met receptor degradation mediated by MET exon 14 mutations in non-small-cell lung cancer. J. Clin. Oncol., 2016, 34(8), 879-881.
[http://dx.doi.org/10.1200/JCO.2015.64.2777] [PMID: 26786927]
[15]
Kreso, A.; Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell, 2014, 14(3), 275-291.
[http://dx.doi.org/10.1016/j.stem.2014.02.006] [PMID: 24607403]
[16]
Miekus, K. The Met tyrosine kinase receptor as a therapeutic target and a potential cancer stem cell factor responsible for therapy resistance. Oncol. (Review) Rep., 2017, 37(2), 647-656.
[http://dx.doi.org/10.3892/or.2016.5297] [PMID: 27959446]
[17]
Avan, A.; Quint, K.; Nicolini, F.; Funel, N.; Frampton, A.E.; Maftouh, M.; Pelliccioni, S.; Schuurhuis, G.J.; Peters, G.J.; Giovannetti, E. Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr. Pharm. Des., 2013, 19(5), 940-950.
[http://dx.doi.org/10.2174/138161213804547312] [PMID: 22973962]
[18]
Li, C.; Wu, J.J.; Hynes, M.; Dosch, J.; Sarkar, B.; Welling, T.H.; Pasca di Magliano, M.; Simeone, D.M. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology, 2011, 141(6), 2218-2227.e5.
[http://dx.doi.org/10.1053/j.gastro.2011.08.009] [PMID: 21864475]
[19]
Yashiro, M.; Nishii, T.; Hasegawa, T.; Matsuzaki, T.; Morisaki, T.; Fukuoka, T.; Hirakawa, K. A c-Met inhibitor increases the chemosensitivity of cancer stem cells to the irinotecan in gastric carcinoma. Br. J. Cancer, 2013, 109(10), 2619-2628.
[http://dx.doi.org/10.1038/bjc.2013.638] [PMID: 24129235]
[20]
Lu, W.; Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell, 2019, 49(3), 361-374.
[http://dx.doi.org/10.1016/j.devcel.2019.04.010] [PMID: 31063755]
[21]
Wang, J.; Wei, Q.; Wang, X.; Tang, S.; Liu, H.; Zhang, F.; Mohammed, M.K.; Huang, J.; Guo, D.; Lu, M.; Liu, F.; Liu, J.; Ma, C.; Hu, X.; Haydon, R.C.; He, T.C.; Luu, H.H. Transition to resistance: An unexpected role of the EMT in cancer chemoresistance. Genes Dis., 2016, 3(1), 3-6.
[http://dx.doi.org/10.1016/j.gendis.2016.01.002] [PMID: 28491932]
[22]
Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; Dedhar, S.; Derynck, R.; Ford, H.L.; Fuxe, J.; García de Herreros, A.; Goodall, G.J.; Hadjantonakis, A.K.; Huang, R.Y.J.; Kalcheim, C.; Kalluri, R.; Kang, Y.; Khew-Goodall, Y.; Levine, H.; Liu, J.; Longmore, G.D.; Mani, S.A.; Massagué, J.; Mayor, R.; McClay, D.; Mostov, K.E.; Newgreen, D.F.; Nieto, M.A.; Puisieux, A.; Runyan, R.; Savagner, P.; Stanger, B.; Stemmler, M.P.; Takahashi, Y.; Takeichi, M.; Theveneau, E.; Thiery, J.P.; Thompson, E.W.; Weinberg, R.A.; Williams, E.D.; Xing, J.; Zhou, B.P.; Sheng, G. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2020, 21(6), 341-352.
[http://dx.doi.org/10.1038/s41580-020-0237-9] [PMID: 32300252]
[23]
Rajadurai, C.V.; Havrylov, S.; Zaoui, K.; Vaillancourt, R.; Stuible, M.; Naujokas, M.; Zuo, D.; Tremblay, M.L.; Park, M. Met receptor tyrosine kinase signals through a cortactin-Gab1 scaffold complex, to mediate invadopodia. J. Cell Sci., 2012, 125(Pt 12), 2940-2953.
[http://dx.doi.org/10.1242/jcs.100834] [PMID: 22366451]
[24]
Jeon, H.M.; Lee, J. MET: Roles in epithelial-mesenchymal transition and cancer stemness. Ann. Transl. Med., 2017, 5(1), 5.
[http://dx.doi.org/10.21037/atm.2016.12.67] [PMID: 28164090]
[25]
Chen, Q.Y.; Jiao, D.M.; Wang, J.; Hu, H.; Tang, X.; Chen, J.; Mou, H.; Lu, W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget, 2016, 7(17), 24510-24526.
[http://dx.doi.org/10.18632/oncotarget.8229] [PMID: 27014910]
[26]
Cañadas, I.; Rojo, F.; Taus, Á.; Arpí, O.; Arumí-Uría, M.; Pijuan, L.; Menéndez, S.; Zazo, S.; Dómine, M.; Salido, M.; Mojal, S.; García de Herreros, A.; Rovira, A.; Albanell, J.; Arriola, E. Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin. Cancer Res., 2014, 20(4), 938-950.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1330] [PMID: 24284055]
[27]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[28]
Hung, T.H.; Li, Y.H.; Tseng, C.P.; Lan, Y.W.; Hsu, S.C.; Chen, Y.H.; Huang, T.T.; Lai, H.C.; Chen, C.M.; Choo, K.B.; Chong, K.Y. Knockdown of c-MET induced apoptosis in ABCB1-overexpressed multidrug-resistance cancer cell lines. Cancer Gene Ther., 2015, 22(5), 262-270.
[http://dx.doi.org/10.1038/cgt.2015.15] [PMID: 25908454]
[29]
Jung, K.A.; Choi, B.H.; Kwak, M.K. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol. Pharmacol., 2015, 87(3), 465-476.
[http://dx.doi.org/10.1124/mol.114.096065] [PMID: 25534417]
[30]
Fan, S.; Ma, Y.X.; Wang, J.A.; Yuan, R.Q.; Meng, Q.; Cao, Y.; Laterra, J.J.; Goldberg, I.D.; Rosen, E.M. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3& kinase. Oncogene, 2000, 19(18), 2212-2223.
[http://dx.doi.org/10.1038/sj.onc.1203566] [PMID: 10822371]
[31]
Wang, J.; Cheng, J.X. c-Met inhibition enhances chemosensitivity of human ovarian cancer cells. Clin. Exp. Pharmacol. Physiol., 2017, 44(1), 79-87.
[http://dx.doi.org/10.1111/1440-1681.12672] [PMID: 27658187]
[32]
Medová, M.; Aebersold, D.M.; Blank-Liss, W.; Streit, B.; Medo, M.; Aebi, S.; Zimmer, Y. MET inhibition results in DNA breaks and synergistically sensitizes tumor cells to DN-damaging agents potentially by breaching a damage-induced checkpoint arrest. Genes Cancer, 2010, 1(10), 1053-1062.
[http://dx.doi.org/10.1177/1947601910388030] [PMID: 21779429]
[33]
Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int. J. Mol. Sci., 2021, 22(11), 5703.
[http://dx.doi.org/10.3390/ijms22115703] [PMID: 34071836]
[34]
Zhang, Q.; Zheng, P.; Zhu, W. Research progress of small molecule VEGFR/c-Met inhibitors as anticancer agents (2016- present). Molecules, 2020, 25(11), 2666.
[http://dx.doi.org/10.3390/molecules25112666] [PMID: 32521825]
[35]
Huang, M.; Liu, T.; Ma, P.; Mitteer, R.A., Jr; Zhang, Z.; Kim, H.J.; Yeo, E.; Zhang, D.; Cai, P.; Li, C.; Zhang, L.; Zhao, B.; Roccograndi, L.; O’Rourke, D.M.; Dahmane, N.; Gong, Y.; Koumenis, C.; Fan, Y. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J. Clin. Invest., 2016, 126(5), 1801-1814.
[http://dx.doi.org/10.1172/JCI84876] [PMID: 27043280]
[36]
Deying, W.; Feng, G.; Shumei, L.; Hui, Z.; Ming, L.; Hongqing, W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci. Rep., 2017, 37(2)BSR20160470
[http://dx.doi.org/10.1042/BSR20160470] [PMID: 28258248]
[37]
Moschetta, M.; Basile, A.; Ferrucci, A.; Frassanito, M.A.; Rao, L.; Ria, R.; Solimando, A.G.; Giuliani, N.; Boccarelli, A.; Fumarola, F.; Coluccia, M.; Rossini, B.; Ruggieri, S.; Nico, B.; Maiorano, E.; Ribatti, D.; Roccaro, A.M.; Vacca, A. Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin. Cancer Res., 2013, 19(16), 4371-4382.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0039] [PMID: 23804425]
[38]
Blyth, B.J.; Cole, A.J.; MacManus, M.P.; Martin, O.A. Radiation therapy-induced metastasis: Radiobiology and clinical implications. Clin. Exp. Metastasis, 2018, 35(4), 223-236.
[http://dx.doi.org/10.1007/s10585-017-9867-5] [PMID: 29159430]
[39]
De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661.
[http://dx.doi.org/10.1093/jnci/djr093] [PMID: 21464397]
[40]
De Bacco, F.; D’Ambrosio, A.; Casanova, E.; Orzan, F.; Neggia, R.; Albano, R.; Verginelli, F.; Cominelli, M.; Poliani, P.L.; Luraghi, P.; Reato, G.; Pellegatta, S.; Finocchiaro, G.; Perera, T.; Garibaldi, E.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. MET inhibition overcomes radiation resistance of glioblastoma stem-like cells. EMBO Mol. Med., 2016, 8(5), 550-568.
[http://dx.doi.org/10.15252/emmm.201505890] [PMID: 27138567]
[41]
Qian, L.W.; Mizumoto, K.; Inadome, N.; Nagai, E.; Sato, N.; Matsumoto, K.; Nakamura, T.; Tanaka, M. Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int. J. Cancer, 2003, 104(5), 542-549.
[http://dx.doi.org/10.1002/ijc.10997] [PMID: 12594808]
[42]
Schweigerer, L.; Rave-Fränk, M.; Schmidberger, H.; Hecht, M. Sublethal irradiation promotes invasiveness of neuroblastoma cells. Biochem. Biophys. Res. Commun., 2005, 330(3), 982-988.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.068] [PMID: 15809092]
[43]
Fernandes, M.; Jamme, P.; Cortot, A.B.; Kherrouche, Z.; Tulasne, D. When the MET receptor kicks in to resist targeted therapies. Oncogene, 2021, 40(24), 4061-4078.
[http://dx.doi.org/10.1038/s41388-021-01835-0] [PMID: 34031544]
[44]
Ko, B.; He, T.; Gadgeel, S.; Halmos, B. MET/HGF pathway activation as a paradigm of resistance to targeted therapies. Ann. Transl. Med., 2017, 5(1), 4.
[http://dx.doi.org/10.21037/atm.2016.12.09] [PMID: 28164089]
[45]
Gusenbauer, S.; Vlaicu, P.; Ullrich, A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene, 2013, 32(33), 3846-3856.
[http://dx.doi.org/10.1038/onc.2012.396] [PMID: 23045285]
[46]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G. viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[47]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[48]
Suzawa, K.; Offin, M.; Schoenfeld, A.J.; Plodkowski, A.J.; Odintsov, I.; Lu, D. Acquired MET exon 14 alteration drives secondary resistance to epidermal growth factor tyrosine kinase inhibitor in EGFR-mutated lung cancer. JCO Precis. Oncol., 2019, 3, PO.19.00011.
[49]
Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; Kwiatkowski, D.J.; Rabin, M.S.; Paweletz, C.P.; Thress, K.S.; Jänne, P.A. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol., 2018, 4(11), 1527-1534.
[http://dx.doi.org/10.1001/jamaoncol.2018.2969] [PMID: 30073261]
[50]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[51]
Ortiz-Cuaran, S.; Scheffler, M.; Plenker, D.; Dahmen, L.; Scheel, A.H.; Fernandez-Cuesta, L.; Meder, L.; Lovly, C.M.; Persigehl, T.; Merkelbach-Bruse, S.; Bos, M.; Michels, S.; Fischer, R.; Albus, K.; König, K.; Schildhaus, H.U.; Fassunke, J.; Ihle, M.A.; Pasternack, H.; Heydt, C.; Becker, C.; Altmüller, J.; Ji, H.; Müller, C.; Florin, A.; Heuckmann, J.M.; Nuernberg, P.; Ansén, S.; Heukamp, L.C.; Berg, J.; Pao, W.; Peifer, M.; Buettner, R.; Wolf, J.; Thomas, R.K.; Sos, M.L. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin. Cancer Res., 2016, 22(19), 4837-4847.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1915] [PMID: 27252416]
[52]
Xu, C.; Wang, W.; Zhu, Y.; Yu, Z.; Zhang, H.; Wang, H.; Zhang, J.; Zhuang, W.; Lv, T.; Song, Y. 1140 Potential resistance mechanisms using next generation sequencing from Chinese EGFR T790M+ non-small cell lung cancer patients with primary resistance to osimertinib: A multicentre study. Ann. Oncol., 2019, 30(Suppl. 2), ii38-ii68.
[http://dx.doi.org/10.1093/annonc/mdz063.012]
[53]
Dagogo-Jack, I.; Yoda, S.; Lennerz, J.K.; Langenbucher, A.; Lin, J.J.; Rooney, M.M.; Prutisto-Chang, K.; Oh, A.; Adams, N.A.; Yeap, B.Y.; Chin, E.; Do, A.; Marble, H.D.; Stevens, S.E.; Digumarthy, S.R.; Saxena, A.; Nagy, R.J.; Benes, C.H.; Azzoli, C.G.; Lawrence, M.S.; Gainor, J.F.; Shaw, A.T.; Hata, A.N. MET alterations are a recurring and actionable resistance mechanism in ALK-positive lung cancer. Clin. Cancer Res., 2020, 26(11), 2535-2545.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3906] [PMID: 32086345]
[54]
Casanovas, O.; Hicklin, D.J.; Bergers, G.; Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell, 2005, 8(4), 299-309.
[http://dx.doi.org/10.1016/j.ccr.2005.09.005] [PMID: 16226705]
[55]
Jahangiri, A.; De Lay, M.; Miller, L.M.; Carbonell, W.S.; Hu, Y.L.; Lu, K.; Tom, M.W.; Paquette, J.; Tokuyasu, T.A.; Tsao, S.; Marshall, R.; Perry, A.; Bjorgan, K.M.; Chaumeil, M.M.; Ronen, S.M.; Bergers, G.; Aghi, M.K. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin. Cancer Res., 2013, 19(7), 1773-1783.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1281] [PMID: 23307858]
[56]
Cascone, T.; Xu, L.; Lin, H.Y.; Liu, W.; Tran, H.T.; Liu, Y.; Howells, K.; Haddad, V.; Hanrahan, E.; Nilsson, M.B.; Cortez, M.A.; Giri, U.; Kadara, H.; Saigal, B.; Park, Y.Y.; Peng, W.; Lee, J.S.; Ryan, A.J.; Jüergensmeier, J.M.; Herbst, R.S.; Wang, J.; Langley, R.R.; Wistuba, I.I.; Lee, J.J.; Heymach, J.V. The HGF/c-MET pathway is a driver and biomarker of VEGFR-inhibitor resistance and vascular remodeling in non-small cell lung cancer. Clin. Cancer Res., 2017, 23(18), 5489-5501.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3216] [PMID: 28559461]
[57]
Luebker, S.A.; Koepsell, S.A. Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front. Oncol., 2019, 9, 268.
[http://dx.doi.org/10.3389/fonc.2019.00268] [PMID: 31058079]
[58]
Knauf, J.A.; Luckett, K.A.; Chen, K.Y.; Voza, F.; Socci, N.D.; Ghossein, R.; Fagin, J.A. Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers. J. Clin. Invest., 2018, 128(9), 4086-4097.
[http://dx.doi.org/10.1172/JCI120966] [PMID: 29990309]
[59]
Minuti, G.; Cappuzzo, F.; Duchnowska, R.; Jassem, J.; Fabi, A.; O’Brien, T.; Mendoza, A.D.; Landi, L.; Biernat, W. Czartoryska-Arłukowicz, B.; Jankowski, T.; Zuziak, D.; Zok, J.; Szostakiewicz, B.; Foszczyńska-Kłoda, M.; Tempi&ska-Sza&ach, A.; Rossi, E.; Varella-Garcia, M. Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br. J. Cancer, 2012, 107(5), 793-799.
[http://dx.doi.org/10.1038/bjc.2012.335] [PMID: 22850551]
[60]
Chen, C.T.; Kim, H.; Liska, D.; Gao, S.; Christensen, J.G.; Weiser, M.R. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol. Cancer Ther., 2012, 11(3), 660-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0754] [PMID: 22238368]
[61]
Vander Velde, R.; Yoon, N.; Marusyk, V.; Durmaz, A.; Dhawan, A.; Miroshnychenko, D.; Lozano-Peral, D.; Desai, B.; Balynska, O.; Poleszhuk, J.; Kenian, L.; Teng, M.; Abazeed, M.; Mian, O.; Tan, A.C.; Haura, E.; Scott, J.; Marusyk, A. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat. Commun., 2020, 11(1), 2393.
[http://dx.doi.org/10.1038/s41467-020-16212-w] [PMID: 32409712]
[62]
Jänne, P.A.; Shaw, A.T.; Camidge, D.R.; Giaccone, G.; Shreeve, S.M.; Tang, Y.; Goldberg, Z.; Martini, J.F.; Xu, H.; James, L.P.; Solomon, B.J. Combined pan-HER and ALK/ROS1/MET inhibition with dacomitinib and crizotinib in advanced non-small cell lung cancer: Results of a Phase I study. J. Thorac. Oncol., 2016, 11(5), 737-747.
[http://dx.doi.org/10.1016/j.jtho.2016.01.022] [PMID: 26899759]
[63]
Yap, T.A.; Omlin, A.; de Bono, J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol., 2013, 31(12), 1592-1605.
[http://dx.doi.org/10.1200/JCO.2011.37.6418] [PMID: 23509311]
[64]
Owonikoko, T.K.; Ragin, C.C.; Belani, C.P.; Oton, A.B.; Gooding, W.E.; Taioli, E.; Ramalingam, S.S. Lung cancer in elderly patients: An analysis of the surveillance, epidemiology, and end results database. J. Clin. Oncol., 2007, 25(35), 5570-5577.
[http://dx.doi.org/10.1200/JCO.2007.12.5435] [PMID: 18065729]
[65]
Roviello, G.; Zanotti, L.; Cappelletti, M.R.; Gobbi, A.; Dester, M.; Paganini, G.; Pacifico, C.; Generali, D.; Roudi, R. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer? Clin. Exp. Med., 2018, 18(1), 15-20.
[http://dx.doi.org/10.1007/s10238-017-0460-7] [PMID: 28391544]
[66]
Liu, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Zhang, Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front. Pharmacol., 2021, 12731798
[http://dx.doi.org/10.3389/fphar.2021.731798] [PMID: 34539412]
[67]
Petrelli, F.; Ferrara, R.; Signorelli, D.; Ghidini, A.; Proto, C.; Roudi, R.; Sabet, M.N.; Facelli, S.; Garassino, M.C.; Luciani, A.; Roviello, G. Immune checkpoint inhibitors and chemotherapy in first-line NSCLC: A meta-analysis. Immunotherapy, 2021, 13(7), 621-631.
[http://dx.doi.org/10.2217/imt-2020-0224] [PMID: 33775103]
[68]
Zhu, J.; Li, R.; Tiselius, E.; Roudi, R.; Teghararian, O.; Suo, C.; Song, H. Immunotherapy (excluding checkpoint inhibitors) for stage I to III non-small cell lung cancer treated with surgery or radiotherapy with curative intent. Cochrane Database Syst. Rev., 2017, 12CD011300
[http://dx.doi.org/10.1002/14651858.CD011300.pub2] [PMID: 29247502]
[69]
Tartarone, A.; Roviello, G.; Lerose, R.; Roudi, R.; Aieta, M.; Zoppoli, P. Anti-PD-1 versus anti-PD-L1 therapy in patients with pretreated advanced non-small-cell lung cancer: A meta-analysis. Future Oncol., 2019, 15(20), 2423-2433.
[http://dx.doi.org/10.2217/fon-2018-0868] [PMID: 31237152]
[70]
Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; Parisi, G.; Saus, C.P.; Torrejon, D.Y.; Graeber, T.G.; Comin-Anduix, B.; Hu-Lieskovan, S.; Damoiseaux, R.; Lo, R.S.; Ribas, A. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep., 2017, 19(6), 1189-1201.
[http://dx.doi.org/10.1016/j.celrep.2017.04.031] [PMID: 28494868]
[71]
Jin, Y; Xue, Q; Shen, X; Zheng, Q; Chen, H; Zhou, X; Li, Y. .PDL1 expression and comprehensive molecular profiling predict survival in nonsmall cell lung cancer: A real-world study of a large Chinese cohort. Clin Lung Cancer, 2021, S1525-7304(21), 00213- 00218..
[72]
Flaifel, A.; Xie, W.; Braun, D.A.; Ficial, M.; Bakouny, Z.; Nassar, A.H.; Jennings, R.B.; Escudier, B.; George, D.J.; Motzer, R.J.; Morris, M.J.; Powles, T.; Wang, E.; Huang, Y.; Freeman, G.J.; Choueiri, T.K.; Signoretti, S. PD-L1 expression and clinical outcomes to cabozantinib, everolimus, and sunitinib in patients with metastatic renal cell carcinoma: Analysis of the randomized clinical trials METEOR and CABOSUN. Clin. Cancer Res., 2019, 25(20), 6080-6088.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1135] [PMID: 31371341]
[73]
Zurlo, I.V.; Schino, M.; Strippoli, A.; Calegari, M.A.; Cocomazzi, A.; Cassano, A. Predictive value of NLR, TILs (CD4+/CD8+) and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Cancer Immunol. Immunother., 2021, 71(1), 45-55.
[http://dx.doi.org/10.1007/s00262-021-02960-1] [PMID: 34009410]
[74]
Zhang, C.; Yang, Q. Predictive values of programmed cell death-ligand 1 expression for prognosis, clinicopathological factors, and response to programmed cell death-1/programmed cell death-ligand 1 inhibitors in patients with gynecological cancers: A meta-analysis. Front. Oncol., 2021, 10572203
[http://dx.doi.org/10.3389/fonc.2020.572203] [PMID: 33634012]
[75]
Martin, V.; Chiriaco, C.; Modica, C.; Acquadro, A.; Cortese, M.; Galimi, F.; Perera, T.; Gammaitoni, L.; Aglietta, M.; Comoglio, P.M.; Vigna, E.; Sangiolo, D. Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours. Br. J. Cancer, 2019, 120(5), 527-536.
[http://dx.doi.org/10.1038/s41416-018-0315-3] [PMID: 30723303]
[76]
Saigi, M.; Alburquerque-Bejar, J.J.; Mc Leer-Florin, A.; Pereira, C.; Pros, E.; Romero, O.A.; Baixeras, N.; Esteve-Codina, A.; Nadal, E.; Brambilla, E.; Sanchez-Cespedes, M. MET-oncogenic and JAK2-inactivating alterations are independent factors that affect regulation of PD-L1 expression in lung cancer. Clin. Cancer Res., 2018, 24(18), 4579-4587.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0267] [PMID: 29898990]
[77]
Albitar, M.; Sudarsanam, S.; Ma, W.; Jiang, S.; Chen, W.; Funari, V.; Blocker, F.; Agersborg, S. Correlation of MET gene amplification and TP53 mutation with PD-L1 expression in non-small cell lung cancer. Oncotarget, 2018, 9(17), 13682-13693.
[http://dx.doi.org/10.18632/oncotarget.24455] [PMID: 29568386]
[78]
Mazieres, J.; Drilon, A.; Lusque, A.; Mhanna, L.; Cortot, A.B.; Mezquita, L.; Thai, A.A.; Mascaux, C.; Couraud, S.; Veillon, R.; Van den Heuvel, M.; Neal, J.; Peled, N.; Früh, M.; Ng, T.L.; Gounant, V.; Popat, S.; Diebold, J.; Sabari, J.; Zhu, V.W.; Rothschild, S.I.; Bironzo, P.; Martinez-Marti, A.; Curioni-Fontecedro, A.; Rosell, R.; Lattuca-Truc, M.; Wiesweg, M.; Besse, B.; Solomon, B.; Barlesi, F.; Schouten, R.D.; Wakelee, H.; Camidge, D.R.; Zalcman, G.; Novello, S.; Ou, S.I.; Milia, J.; Gautschi, O. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann. Oncol., 2019, 30(8), 1321-1328.
[http://dx.doi.org/10.1093/annonc/mdz167] [PMID: 31125062]
[79]
Finisguerra, V.; Di Conza, G.; Di Matteo, M.; Serneels, J.; Costa, S.; Thompson, A.A.; Wauters, E.; Walmsley, S.; Prenen, H.; Granot, Z.; Casazza, A.; Mazzone, M. MET is required for the recruitment of anti-tumoural neutrophils. Nature, 2015, 522(7556), 349-353.
[http://dx.doi.org/10.1038/nature14407] [PMID: 25985180]
[80]
Benkhoucha, M.; Santiago-Raber, M.L.; Schneiter, G.; Chofflon, M.; Funakoshi, H.; Nakamura, T.; Lalive, P.H. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA, 2010, 107(14), 6424-6429.
[http://dx.doi.org/10.1073/pnas.0912437107] [PMID: 20332205]
[81]
George, D.J.; Lee, C.H.; Heng, D. New approaches to first-line treatment of advanced renal cell carcinoma. Ther. Adv. Med. Oncol., 2021, 1317588359211034708
[http://dx.doi.org/10.1177/17588359211034708] [PMID: 34527080]
[82]
Yuan, Q.; Liang, Q.; Sun, Z.; Yuan, X.; Hou, W.; Wang, Y.; Wang, H.; Yu, M. Development of bispecific anti-c-Met/PD-1 diabodies for the treatment of solid tumors and the effect of c-Met binding affinity on efficacy. OncoImmunology, 2021, 10(1)1914954
[http://dx.doi.org/10.1080/2162402X.2021.1914954] [PMID: 34350059]
[83]
Malik, R.; Mambetsariev, I.; Fricke, J.; Chawla, N.; Nam, A.; Pharaon, R.; Salgia, R. MET receptor in oncology: From biomarker to therapeutic target. Adv. Cancer Res., 2020, 147, 259-301.
[http://dx.doi.org/10.1016/bs.acr.2020.04.006] [PMID: 32593403]
[84]
Miranda, O.; Farooqui, M.; Siegfried, J.M. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers (Basel), 2018, 10(9), 280.
[http://dx.doi.org/10.3390/cancers10090280] [PMID: 30134579]
[85]
Patnaik, A.; Weiss, G.J.; Papadopoulos, K.P.; Hofmeister, C.C.; Tibes, R.; Tolcher, A.; Isaacs, R.; Jac, J.; Han, M.; Payumo, F.C.; Cotreau, M.M.; Ramanathan, R.K. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br. J. Cancer, 2014, 111(2), 272-280.
[http://dx.doi.org/10.1038/bjc.2014.290] [PMID: 24901237]
[86]
Yoh, K.; Doi, T.; Ohmatsu, H.; Kojima, T.; Takahashi, H.; Zenke, Y.; Wacheck, V.; Enatsu, S.; Nakamura, T.; Turner, K.; Uenaka, K. A phase I dose-escalation study of LY2875358, a bivalent MET antibody, given as monotherapy or in combination with erlotinib or gefitinib in Japanese patients with advanced malignancies. Invest. New Drugs, 2016, 34(5), 584-595.
[http://dx.doi.org/10.1007/s10637-016-0370-7] [PMID: 27422720]
[87]
Ross Camidge, D.; Moran, T.; Demedts, I.; Grosch, H.; Di Mercurio, J.P.; Mileham, K.F. A randomized, open-label, phase 2 study of emibetuzumab plus erlotinib (LY+E) and emibetuzumab monotherapy (LY) in patients with acquired resistance to erlotinib and MET diagnostic positive (MET Dx+) metastatic NSCLC. J. Clin. Oncol., 2016, 34(15)(Suppl.), 9070-9070.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9070]
[88]
Modica, C.; Basilico, C.; Chiriaco, C.; Borrelli, N.; Comoglio, P.M.; Vigna, E. A receptor-antibody hybrid hampering MET-driven metastatic spread. J. Exp. Clin. Cancer Res., 2021, 40(1), 32.
[http://dx.doi.org/10.1186/s13046-020-01822-5] [PMID: 33446252]
[89]
Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S-W.; Hida, T.; De Jonge, M.J.; Orlov, S.V.; Smit, E.F.; Souquet, P.J.; Vansteenkiste, J.F.; Giovannini, M.; Le Mouhaer, S.; Robeva, A.; Waldron-Lynch, M.; Heist, R.S. Capmatinib (INC280) in METDex14-mutated advanced non-small cell lung cancer (NSCLC): Efficacy data from the phase II GEOMETRY mono-1 study. J. Clin. Oncol., 2019, 37(15)(Suppl.), 9004-9004.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.9004]
[90]
Drilon, A.; Cappuzzo, F.; Ou, S.I.; Camidge, D.R. Targeting MET in lung cancer: Will expectations finally be MET? J. Thorac. Oncol., 2017, 12(1), 15-26.
[http://dx.doi.org/10.1016/j.jtho.2016.10.014] [PMID: 27794501]
[91]
Hughes, V.S.; Siemann, D.W. Failures in preclinical and clinical trials of c-Met inhibitors: Evaluation of pathway activity as a promising selection criterion. Oncotarget, 2019, 10(2), 184-197.
[http://dx.doi.org/10.18632/oncotarget.26546] [PMID: 30719213]
[92]
Peters, S.; Adjei, A.A. MET: A promising anticancer therapeutic target. Nat. Rev. Clin. Oncol., 2012, 9(6), 314-326.
[http://dx.doi.org/10.1038/nrclinonc.2012.71] [PMID: 22566105]
[93]
Joffre, C.; Barrow, R.; Ménard, L.; Calleja, V.; Hart, I.R.; Kermorgant, S. A direct role for met endocytosis in tumorigenesis. Nat. Cell Biol., 2011, 13(7), 827-837.
[http://dx.doi.org/10.1038/ncb2257] [PMID: 21642981]
[94]
Nakamura, Y.; Niki, T.; Goto, A.; Morikawa, T.; Miyazawa, K.; Nakajima, J.; Fukayama, M. c-Met activation in lung adenocarcinoma tissues: An immunohistochemical analysis. Cancer Sci., 2007, 98(7), 1006-1013.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00493.x] [PMID: 17459054]
[95]
Watermann, I.; Schmitt, B.; Stellmacher, F.; Müller, J.; Gaber, R.; Kugler, Ch.; Reinmuth, N.; Huber, R.M.; Thomas, M.; Zabel, P.; Rabe, K.F.; Jonigk, D.; Warth, A.; Vollmer, E.; Reck, M.; Goldmann, T. Improved diagnostics targeting c-MET in non-small cell lung cancer: Expression, amplification and activation? Diagn. Pathol., 2015, 10(1), 130.
[http://dx.doi.org/10.1186/s13000-015-0362-5] [PMID: 26215852]
[96]
Friedlaender, A.; Drilon, A.; Banna, G.L.; Peters, S.; Addeo, A. The METeoric rise of MET in lung cancer. Cancer, 2020, 126(22), 4826-4837.
[http://dx.doi.org/10.1002/cncr.33159] [PMID: 32888330]
[97]
Srivastava, A.K.; Navas, T.; Herrick, W.G.; Hollingshead, M.G.; Bottaro, D.P.; Doroshow, J.H.; Parchment, R.E. Effective implementation of novel MET pharmacodynamic assays in translational studies. Ann. Transl. Med., 2017, 5(1), 3-3.
[http://dx.doi.org/10.21037/atm.2016.12.78] [PMID: 28164088]
[98]
Huang, F.; Ma, Z.; Pollan, S.; Yuan, X.; Swartwood, S.; Gertych, A.; Rodriguez, M.; Mallick, J.; Bhele, S.; Guindi, M.; Dhall, D.; Walts, A.E.; Bose, S.; de Peralta Venturina, M.; Marchevsky, A.M.; Luthringer, D.J.; Feller, S.M.; Berman, B.; Freeman, M.R.; Alvord, W.G.; Vande Woude, G.; Amin, M.B.; Knudsen, B.S. Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. J. Pathol. Clin. Res., 2016, 2(4), 210-222.
[http://dx.doi.org/10.1002/cjp2.49] [PMID: 27785366]
[99]
Guo, R.; Berry, L.D.; Aisner, D.L.; Sheren, J.; Boyle, T.; Bunn, P.A., Jr; Johnson, B.E.; Kwiatkowski, D.J.; Drilon, A.; Sholl, L.M.; Kris, M.G. MET IHC, is a poor screen for MET amplification or MET exon 14 mutations in lung adenocarcinomas: Data from a tri-institutional cohort of the lung cancer mutation consortium. J. Thorac. Oncol., 2019, 14(9), 1666-1671.
[http://dx.doi.org/10.1016/j.jtho.2019.06.009] [PMID: 31228623]
[100]
Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; Hoover, R.; Ou, S.H.; Salgia, R.; Brennan, T.; Chalmers, Z.R.; Jaeger, S.; Huang, A.; Elvin, J.A.; Erlich, R.; Fichtenholtz, A.; Gowen, K.A.; Greenbowe, J.; Johnson, A.; Khaira, D.; McMahon, C.; Sanford, E.M.; Roels, S.; White, J.; Greshock, J.; Schlegel, R.; Lipson, D.; Yelensky, R.; Morosini, D.; Ross, J.S.; Collisson, E.; Peters, M.; Stephens, P.J.; Miller, V.A. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov., 2015, 5(8), 850-859.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0285] [PMID: 25971938]
[101]
Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; Christensen, J.; Hammerman, P.S.; Sholl, L.M. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J. Clin. Oncol., 2016, 34(7), 721-730.
[http://dx.doi.org/10.1200/JCO.2015.63.4600] [PMID: 26729443]
[102]
Santini, F.C.; Kunte, S.; Drilon, A. Combination MET- and EGFR-directed therapy in MET-overexpressing non-small cell lung cancers: Time to move on to better biomarkers? Transl. Lung Cancer Res., 2017, 6(3), 393-395.
[103]
Duplaquet, L.; Kherrouche, Z.; Baldacci, S.; Jamme, P.; Cortot, A.B.; Copin, M.C.; Tulasne, D. The multiple paths towards MET receptor addiction in cancer. Oncogene, 2018, 37(24), 3200-3215.
[http://dx.doi.org/10.1038/s41388-018-0185-4] [PMID: 29551767]
[104]
Garber, K. MET inhibitors start on road to recovery. Nat. Rev. Drug Discov., 2014, 13(8), 563-565.
[http://dx.doi.org/10.1038/nrd4406] [PMID: 25082276]
[105]
Yin, W.; Cheng, J.; Tang, Z.; Toruner, G.; Hu, S.; Guo, M.; Robinson, M.; Medeiros, L.J.; Tang, G. MET amplification (MET/CEP7 ratio > 1.8) is an independent poor prognostic marker in patients with treatment-naïve non-small-cell lung cancer. Clin. Lung Cancer, 2021, 22(4), e512-e518.
[http://dx.doi.org/10.1016/j.cllc.2020.11.002] [PMID: 33288441]
[106]
Paik, P.K.; Drilon, A.; Fan, P-D.P.D.; Yu, H.; Rekhtman, N.; Ginsberg, M.S.; Borsu, L.; Schultz, N.; Berger, M.F.; Rudin, C.M.; Ladanyi, M. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov., 2015, 5(8), 842-849.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1467] [PMID: 25971939]
[107]
Collisson, E.A.; Campbell, J.D.; Brooks, A.N.; Berger, A.H.; Lee, W.; Chmielecki, J. Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas research network. Nature 2014; 511: 543-550. Lung Cancer Res., 2017, 6, 393-395.
[108]
Spigel, D.R.; Reynolds, C.; Waterhouse, D.; Garon, E.B.; Chandler, J.; Babu, S.; Thurmes, P.; Spira, A.; Jotte, R.; Zhu, J.; Lin, W.H.; Blumenschein, G. Jr Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation – positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol., 2018, 13(5), 682-688.
[http://dx.doi.org/10.1016/j.jtho.2018.02.022] [PMID: 29518553]
[109]
Tang, X.L.; Yan, L.; Zhu, L.; Jiao, D.M.; Chen, J.; Chen, Q.Y. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway. J. Pharmacol. Sci., 2017, 135(1), 1-7.
[http://dx.doi.org/10.1016/j.jphs.2017.06.006] [PMID: 28939129]
[110]
Sun, C.Y.; Zhu, Y.; Li, X.F.; Wang, X.Q.; Tang, L.P.; Su, Z.Q.; Li, C.Y.; Zheng, G.J.; Feng, B. Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways. Front. Pharmacol., 2018, 9, 92.
[http://dx.doi.org/10.3389/fphar.2018.00092] [PMID: 29487530]
[111]
Hage, C.; Rausch, V.; Giese, N.; Giese, T.; Schönsiegel, F.; Labsch, S.; Nwaeburu, C.; Mattern, J.; Gladkich, J.; Herr, I. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer. Cell Death Dis., 2013, 4(5)e627
[http://dx.doi.org/10.1038/cddis.2013.158] [PMID: 23661005]
[112]
Rucki, A.A.; Xiao, Q.; Muth, S.; Chen, J.; Che, X.; Kleponis, J.; Sharma, R.; Anders, R.A.; Jaffee, E.M.; Zheng, L. Dual inhibition of Hedgehog and c-Met pathways for pancreatic cancer treatment. Mol. Cancer Ther., 2017, 16(11), 2399-2409.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0452] [PMID: 28864680]
[113]
Gao, Y.; Chen, M.K.; Chu, Y.Y.; Yang, L.; Yu, D.; Liu, Y.; Hung, M.C. Nuclear translocation of the receptor tyrosine kinase c-MET reduces the treatment efficacies of olaparib and gemcitabine in pancreatic ductal adenocarcinoma cells. Am. J. Cancer Res., 2021, 11(1), 236-250.
[PMID: 33520371]
[114]
Grotegut, S.; Kappler, R.; Tarimoradi, S.; Lehembre, F.; Christofori, G.; Von Schweinitz, D. Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation. Int. J. Oncol., 2010, 36(5), 1261-1267.
[PMID: 20372801]
[115]
Eng, C.; Bessudo, A.; Hart, L.L.; Severtsev, A.; Gladkov, O.; Müller, L.; Kopp, M.V.; Vladimirov, V.; Langdon, R.; Kotiv, B.; Barni, S.; Hsu, C.; Bolotin, E.; von Roemeling, R.; Schwartz, B.; Bendell, J.C. A randomized, placebo-controlled, phase 1/2 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild-type KRAS who have received first-line systemic therapy. Int. J. Cancer, 2016, 139(1), 177-186.
[http://dx.doi.org/10.1002/ijc.30049] [PMID: 26891420]
[116]
Bendell, J.C.; Hochster, H.; Hart, L.L.; Firdaus, I.; Mace, J.R.; McFarlane, J.J.; Kozloff, M.; Catenacci, D.; Hsu, J.J.; Hack, S.P.; Shames, D.S.; Phan, S.C.; Koeppen, H.; Cohn, A.L. A phase II randomized trial (GO27827) of first-line FOLFOX plus bevacizumab with or without the MET inhibitor onartuzumab in patients with metastatic colorectal cancer. Oncologist, 2017, 22(3), 264-271.
[http://dx.doi.org/10.1634/theoncologist.2016-0223] [PMID: 28209746]
[117]
Iveson, T.; Donehower, R.C.; Davidenko, I.; Tjulandin, S.; Deptala, A.; Harrison, M.; Nirni, S.; Lakshmaiah, K.; Thomas, A.; Jiang, Y.; Zhu, M.; Tang, R.; Anderson, A.; Dubey, S.; Oliner, K.S.; Loh, E. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: An open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol., 2014, 15(9), 1007-1018.
[http://dx.doi.org/10.1016/S1470-2045(14)70023-3] [PMID: 24965569]
[118]
Ryan, C.J.; Rosenthal, M.; Ng, S.; Alumkal, J.; Picus, J.; Gravis, G.; Fizazi, K.; Forget, F.; Machiels, J.P.; Srinivas, S.; Zhu, M.; Tang, R.; Oliner, K.S.; Jiang, Y.; Loh, E.; Dubey, S.; Gerritsen, W.R. Targeted MET inhibition in castration-resistant prostate cancer: A randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin. Cancer Res., 2013, 19(1), 215-224.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2605] [PMID: 23136195]
[119]
Leone, J.P.; Duda, D.G.; Hu, J.; Barry, W.T.; Trippa, L.; Gerstner, E.R.; Jain, R.K.; Tan, S.; Lawler, E.; Winer, E.P.; Lin, N.U.; Tolaney, S.M. A phase II study of cabozantinib alone or in combination with trastuzumab in breast cancer patients with brain metastases. Breast Cancer Res. Treat., 2020, 179(1), 113-123.
[http://dx.doi.org/10.1007/s10549-019-05445-z] [PMID: 31541381]
[120]
Delord, J.P.; Argilés, G.; Fayette, J.; Wirth, L.; Kasper, S.; Siena, S.; Mesia, R.; Berardi, R.; Cervantes, A.; Dekervel, J.; Zhao, S.; Sun, Y.; Hao, H.X.; Tiedt, R.; Vicente, S.; Myers, A.; Siu, L.L. A phase 1b study of the MET inhibitor capmatinib combined with cetuximab in patients with MET-positive colorectal cancer who had progressed following anti-EGFR monoclonal antibody treatment. Invest. New Drugs, 2020, 38(6), 1774-1783.
[http://dx.doi.org/10.1007/s10637-020-00928-z] [PMID: 32410080]
[121]
Tarhini, A.A.; Rafique, I.; Floros, T.; Tran, P.; Gooding, W.E.; Villaruz, L.C.; Burns, T.F.; Friedland, D.M.; Petro, D.P.; Farooqui, M.; Gomez-Garcia, J.; Gaither-Davis, A.; Dacic, S.; Argiris, A.; Socinski, M.A.; Stabile, L.P.; Siegfried, J.M. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer, 2017, 123(15), 2936-2944.
[http://dx.doi.org/10.1002/cncr.30717] [PMID: 28472537]
[122]
Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; Orlov, S.; Cantarini, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.; Frewer, P.; Ou, X.; Oxnard, G. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol., 2020, 21(3), 373-386.
[http://dx.doi.org/10.1016/S1470-2045(19)30785-5] [PMID: 32027846]
[123]
Wu, Y.L.; Cheng, Y.; Zhou, J.; Lu, S.; Zhang, Y.; Zhao, J.; Kim, D.W.; Soo, R.A.; Kim, S.W.; Pan, H.; Chen, Y.M.; Chian, C.F.; Liu, X.; Tan, D.S.W.; Bruns, R.; Straub, J.; Johne, A.; Scheele, J.; Park, K.; Yang, J.C.; Wu, Y-L.; Liu, X.; Liu, Z.; Lu, S.; Chen, X.; Pan, H.; Wang, M.; Yu, S.; Zhang, H.; Zhang, Y.; Fang, J.; Li, W.; Zhou, J.; Zhao, J.; Cheng, Y.; Yang, C-H.; Chang, G-C.; Chen, Y-M.; Hsia, T-C.; Chian, C-F.; Yang, C-T.; Wang, C-C.; Kim, S-W.; Park, K.; Kim, D-W.; Cho, B.C.; Lee, K.H.; Kim, Y-C.; An, H.J.; Woo, I.S.; Cho, J.Y.; Shin, S.W.; Lee, J-S.; Kim, J-H.; Yoo, S.S.; Kato, T.; Shinagawa, N.; Soo, R.A.; Tan, S.W.D.; Ngo, L.S-M.; Ratnavelu, K.; Ahmad, A.R.; Liam, C.K.; de Marinis, F.; Tassone, P.; Molla, A.I.; Calles Blanco, A.; Lazaro Quintela, M.E.; Felip Font, E.; Dingemans, A-M.; Bui, L. Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir. Med., 2020, 8(11), 1132-1143.
[http://dx.doi.org/10.1016/S2213-2600(20)30154-5] [PMID: 32479794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy