Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review

Author(s): Sonia Singh*, Khushi Sharma and Himanshu Sharma

Volume 21, Issue 4, 2024

Published on: 15 June, 2023

Page: [544 - 570] Pages: 27

DOI: 10.2174/1567201820666230602164325

Price: $65

Abstract

Globally, high death rates and poor quality of life are caused mainly by inflammatory diseases. Corticosteroids, which may have systemic side effects and would enhance the risk of infection, are the common forms of therapy. The field of nanomedicine has created composite nanoparticles that carry a pharmacological carrier and target ligands for distribution to sites of inflammation with less systemic toxicity. However, their relatively large size often causes systemic clearance. An interesting approach is metal-based nanoparticles that naturally reduce inflammation. They are made not only to be small enough to pass through biological barriers but also to allow label-free monitoring of their interactions with cells. The following literature review discusses the mechanistic analysis of the anti-inflammatory properties of several metal-based nanoparticles, including gold, silver, titanium dioxide, selenium, and zinc oxide. Current research focuses on the mechanisms by which nanoparticles infiltrate cells and the anti-inflammatory techniques using herbal extracts-based nanoparticles. Additionally, it provides a brief overview of the literature on many environmentally friendly sources employed in nanoparticle production and the mechanisms of action of various nanoparticles.

Keywords: Nanoparticles, metal nanoparticles, plant extract, inflammation, pathways, inflammatory.

Graphical Abstract
[1]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[2]
Hirayama, D.; Iida, T.; Nakase, H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci., 2017, 19(1), 92.
[http://dx.doi.org/10.3390/ijms19010092] [PMID: 29286292]
[3]
Li, R.; Liu, K.; Huang, X.; Li, D.; Ding, J.; Liu, B.; Chen, X. Bioactive materials promote wound healing through modulation of cell behaviors. Adv. Sci. (Weinh.), 2022, 9(10), 2105152.
[http://dx.doi.org/10.1002/advs.202105152] [PMID: 35138042]
[4]
Ryan, G.B.; Majno, G. Acute inflammation. A review. Am. J. Pathol., 1977, 86(1), 183-276.
[PMID: 64118]
[5]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[6]
Lawrence, T.; Willoughby, D.A.; Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol., 2002, 2(10), 787-795.
[http://dx.doi.org/10.1038/nri915] [PMID: 12360216]
[7]
Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell, 2006, 124(4), 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[8]
Punchard, N.A.; Whelan, C.J.; Adcock, I. The journal of inflammation. J. Inflamm. (Lond.), 2004, 1(1), 1-4.
[http://dx.doi.org/10.1186/1476-9255-1-1] [PMID: 15813979]
[9]
Ahmed, A.U. An overview of inflammation: mechanism and consequences. Front. Biol. (Beijing), 2011, 6(4), 274-281.
[http://dx.doi.org/10.1007/s11515-011-1123-9]
[10]
Medzhitov, R. Inflammation 2010: new adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[11]
Holmes, C.; Cunningham, C.; Zotova, E.; Woolford, J.; Dean, C.; Kerr, S.; Culliford, D.; Perry, V.H. Systemic inflammation and disease progression in Alzheimer disease. Neurology, 2009, 73(10), 768-774.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bb95] [PMID: 19738171]
[12]
Buckley, C.D.; Gilroy, D.W.; Serhan, C.N.; Stockinger, B.; Tak, P.P. The resolution of inflammation. Nat. Rev. Immunol., 2013, 13(1), 59-66.
[http://dx.doi.org/10.1038/nri3362] [PMID: 23197111]
[13]
Ho, G.T.; Chiam, P.; Drummond, H.; Loane, J.; Arnott, I.D.R.; Satsangi, J. The efficacy of corticosteroid therapy in inflammatory bowel disease: Analysis of a 5-year UK inception cohort. Aliment. Pharmacol. Ther., 2006, 24(2), 319-330.
[http://dx.doi.org/10.1111/j.1365-2036.2006.02974.x] [PMID: 16842459]
[14]
Han, R.; Xiao, Y.; Bai, Q.; Choi, C.H.J. Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm. Sin. B, 2022.
[http://dx.doi.org/10.1016/j.apsb.2022.07.009]
[15]
Ivanenkov, Y.A.; Balakin, K.V.; Tkachenko, S.E. New approaches to the treatment of inflammatory disease: Focus on small-molecule inhibitors of signal transduction pathways. Drugs R D., 2008, 9(6), 397-434.
[http://dx.doi.org/10.2165/0126839-200809060-00005] [PMID: 18989991]
[16]
Baugh, J.A.; Bucala, R. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr. Opin. Drug Discov. Devel., 2001, 4(5), 635-650.
[PMID: 12825458]
[17]
Kamata, M.; Tada, Y. Efficacy and safety of biologics for psoriasis and psoriatic arthritis and their impact on comorbidities: A literature review. Int. J. Mol. Sci., 2020, 21(5), 1690.
[http://dx.doi.org/10.3390/ijms21051690] [PMID: 32121574]
[18]
Li, X.; Andersen, K.M.; Chang, H.Y.; Curtis, J.R.; Alexander, G.C. Comparative risk of serious infections among real-world users of bio-logics for psoriasis or psoriatic arthritis. Ann. Rheum. Dis., 2020, 79(2), 285-291.
[http://dx.doi.org/10.1136/annrheumdis-2019-216102] [PMID: 31672774]
[19]
Phull, A.R.; Abbas, Q.; Ali, A.; Raza, H.; kim, S.J.; Zia, M.; Haq, I. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2016, 2(1), 31-36.
[http://dx.doi.org/10.1016/j.fjps.2016.03.001]
[20]
Yuan, Y.; Cai, T.; Xia, X.; Zhang, R.; Chiba, P.; Cai, Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv., 2016, 23(9), 3350-3357.
[http://dx.doi.org/10.1080/10717544.2016.1178825] [PMID: 27098896]
[21]
Ramos, A.P.; Cruz, M.A.E.; Tovani, C.B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophys. Rev., 2017, 9(2), 79-89.
[http://dx.doi.org/10.1007/s12551-016-0246-2] [PMID: 28510082]
[22]
De Crozals, G.; Bonnet, R.; Farre, C.; Chaix, C. Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today, 2016, 11(4), 435-463.
[http://dx.doi.org/10.1016/j.nantod.2016.07.002]
[23]
Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys., 2014, 47(1), 013001.
[http://dx.doi.org/10.1088/0022-3727/47/1/013001]
[24]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.; Poinern, G. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[25]
Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res., 2016, 32(2), 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[26]
Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res., 2007, 5(1), 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[27]
Sostres, C.; Gargallo, C.J.; Lanas, A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res. Ther., 2013, 15(Suppl 3 Suppl. 3), S3.
[http://dx.doi.org/10.1186/ar4175] [PMID: 24267289]
[28]
Viscido, A.; Capannolo, A.; Latella, G.; Caprilli, R.; Frieri, G. Nanotechnology in the treatment of inflammatory bowel diseases. J. Crohn’s Colitis, 2014, 8(9), 903-918.
[http://dx.doi.org/10.1016/j.crohns.2014.02.024] [PMID: 24686095]
[29]
Sreelakshmy, V.; Deepa, M.K.; Mridula, P. Green synthesis of silver nanoparticles from Glycyrrhiza glabra root extract for the treatment of gastric ulcer. J. Dev. Drugs, 2016, 5(152), 2.
[30]
Sun, Q.; Li, W.; Li, H.; Wang, X.; Wang, Y.; Niu, X. Preparation, characterization and anti-ulcer efficacy of Sanguinarine loaded solid lipid nanoparticles. Pharmacology, 2017, 100(1-2), 14-24.
[http://dx.doi.org/10.1159/000454882] [PMID: 28334726]
[31]
Gonçalves, I.C.; Henriques, P.C.; Seabra, C.L.; Martins, M.C.L. The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Rev. Anti Infect. Ther., 2014, 12(8), 981-992.
[http://dx.doi.org/10.1586/14787210.2014.930663] [PMID: 24981812]
[32]
Suarez, S.; Almutairi, A.; Christman, K.L. Micro- and nanoparticles for treating cardiovascular disease. Biomater. Sci., 2015, 3(4), 564-580.
[http://dx.doi.org/10.1039/C4BM00441H] [PMID: 26146548]
[33]
Ambesh, P.; Campia, U.; Obiagwu, C.; Bansal, R.; Shetty, V.; Hollander, G.; Shani, J. Nanomedicine in coronary artery disease. Indian Heart J., 2017, 69(2), 244-251.
[http://dx.doi.org/10.1016/j.ihj.2017.02.007] [PMID: 28460774]
[34]
Nishiyama, T.; Mae, T.; Kishida, H.; Tsukagawa, M.; Mimaki, Y.; Kuroda, M.; Sashida, Y.; Takahashi, K.; Kawada, T.; Nakagawa, K.; Kitahara, M. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J. Agric. Food Chem., 2005, 53(4), 959-963.
[http://dx.doi.org/10.1021/jf0483873] [PMID: 15713005]
[35]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[36]
Deodhar, S.D.; Sethi, R.; Srimal, R.C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J. Med. Res., 1980, 71(1), 632-634.
[PMID: 7390600]
[37]
Bundy, R.; Walker, A.F.; Middleton, R.W.; Booth, J. Turmeric extract may improve irritable bowel syndrome symptomology in otherwise healthy adults: A pilot study. J. Altern. Complement. Med., 2004, 10(6), 1015-1018.
[http://dx.doi.org/10.1089/acm.2004.10.1015] [PMID: 15673996]
[38]
Shoskes, D.; Lapierre, C.; Cruz-Corerra, M.; Muruve, N.; Rosario, R.; Fromkin, B.; Braun, M.; Copley, J. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: A randomized placebo controlled trial. Transplantation, 2005, 80(11), 1556-1559.
[http://dx.doi.org/10.1097/01.tp.0000183290.64309.21] [PMID: 16371925]
[39]
Mahluji, S.; Ostadrahimi, A.; Mobasseri, M.; Ebrahimzade Attari, V.; Payahoo, L. Anti-inflammatory effects of zingiber officinale in type 2 diabetic patients. Adv. Pharm. Bull., 2013, 3(2), 273-276.
[PMID: 24312847]
[40]
Ueda, H.; Ippoushi, K.; Takeuchi, A. Repeated oral administration of a squeezed ginger (Zingiber officinale) extract augmented the serum corticosterone level and had anti-inflammatory properties. Biosci. Biotechnol. Biochem., 2010, 74(11), 2248-2252.
[http://dx.doi.org/10.1271/bbb.100456] [PMID: 21071834]
[41]
Drozdov, V.N.; Kim, V.A.; Tkachenko, E.V.; Varvanina, G.G. Influence of a specific ginger combination on gastropathy conditions in patients with osteoarthritis of the knee or hip. J. Altern. Complement. Med., 2012, 18(6), 583-588.
[http://dx.doi.org/10.1089/acm.2011.0202] [PMID: 22784345]
[42]
Haghighi, M; Khalvat, A; Toliat, T; Jallaei, SH Comparing the Effects of ginger (Zingiber officinale) extract and ibuprofen On patients with osteoarthritis. Arch. Iranian Med., 8(4), 267-271.
[43]
Haghighi, A.; Tavalaei, N.; Owlia, M.B. Effects of ginger on primary knee osteoarthritis. Indian J. Rheumatol., 2006, 1(1), 3-7.
[http://dx.doi.org/10.1016/S0973-3698(10)60514-6]
[44]
Altman, R.D.; Marcussen, K.C. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum., 2001, 44(11), 2531-2538.
[http://dx.doi.org/10.1002/1529-0131(200111)44:11<2531:AID-ART433>3.0.CO;2-J] [PMID: 11710709]
[45]
Srivastava, K.C.; Mustafa, T. Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med. Hypotheses, 1992, 39(4), 342-348.
[http://dx.doi.org/10.1016/0306-9877(92)90059-L] [PMID: 1494322]
[46]
al-Sereiti, M.R.; Abu-Amer, K.M.; Sen, P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J. Exp. Biol., 1999, 37(2), 124-130.
[PMID: 10641130]
[47]
Lukaczer, D.; Darland, G.; Tripp, M.; Liska, D.A.; Lerman, R.H.; Schiltz, B.; Bland, J.S. A Pilot trial evaluating meta050, a proprietary combination of reduced iso-alpha acids, rosemary extract and oleanolic acid in patients with arthritis and fibromyalgia. Phytother. Res., 2005, 19(10), 864-869.
[http://dx.doi.org/10.1002/ptr.1709] [PMID: 16261517]
[48]
Amaral, G.P.; de Carvalho, N.R.; Barcelos, R.P.; Dobrachinski, F.; Portella, R.L.; da Silva, M.H.; Lugokenski, T.H.; Dias, G.R.M.; da Luz, S.C.A.; Boligon, A.A.; Athayde, M.L.; Villetti, M.A.; Antunes Soares, F.A.; Fachinetto, R. Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats. Food Chem. Toxicol., 2013, 55, 48-55.
[http://dx.doi.org/10.1016/j.fct.2012.12.038] [PMID: 23279841]
[49]
Nusier, M.K.; Bataineh, H.N.; Daradkah, H.M. Adverse effects of rosemary (Rosmarinus officinalis L.) on reproductive function in adult male rats. Exp. Biol. Med. (Maywood), 2007, 232(6), 809-813.
[PMID: 17526773]
[50]
Abu-Al-Basal, M.A. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J. Ethnopharmacol., 2010, 131(2), 443-450.
[http://dx.doi.org/10.1016/j.jep.2010.07.007] [PMID: 20633625]
[51]
Dickmann, L.J.; VandenBrink, B.M.; Lin, Y.S. In vitro hepatotoxicity and cytochrome P450 induction and inhibition characteristics of car-nosic acid, a dietary supplement with antiadipogenic properties. Drug Metab. Dispos., 2012, 40(7), 1263-1267.
[http://dx.doi.org/10.1124/dmd.112.044909] [PMID: 22531045]
[52]
Miceli, A.; Aleo, A.; Corona, O.; Sardina, M.T.; Mammina, C.; Settanni, L. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control, 2014, 40, 157-164.
[http://dx.doi.org/10.1016/j.foodcont.2013.12.006]
[53]
Kast, R.E. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha. Int. Immunopharmacol., 2001, 1(12), 2197-2199.
[http://dx.doi.org/10.1016/S1567-5769(01)00146-1] [PMID: 11710548]
[54]
Soeken, K.L.; Miller, S.A.; Ernst, E. Herbal medicines for the treatment of rheumatoid arthritis: A systematic review. Br. J. Rheumatol., 2003, 42(5), 652-659.
[http://dx.doi.org/10.1093/rheumatology/keg183] [PMID: 12709541]
[55]
Bogani, P.; Galli, C.; Villa, M.; Visioli, F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis, 2007, 190(1), 181-186.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.01.011] [PMID: 16488419]
[56]
Najmi, M.; Vahdat Shariatpanahi, Z.; Tolouei, M.; Amiri, Z. Effect of oral olive oil on healing of 10-20% total body surface area burn wounds in hospitalized patients. Burns, 2015, 41(3), 493-496.
[http://dx.doi.org/10.1016/j.burns.2014.08.010] [PMID: 25306088]
[57]
Sánchez-Fidalgo, S.; Villegas, I.; Cárdeno, A.; Talero, E.; Sánchez-Hidalgo, M.; Motilva, V.; Alarcón de la Lastra, C. Extra-virgin olive oil-enriched diet modulates DSS-colitis-associated colon carcinogenesis in mice. Clin. Nutr., 2010, 29(5), 663-673.
[http://dx.doi.org/10.1016/j.clnu.2010.03.003] [PMID: 20427102]
[58]
Nyman, N.A.; Kumpulainen, J.T. Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. J. Agric. Food Chem., 2001, 49(9), 4183-4187.
[http://dx.doi.org/10.1021/jf010572i] [PMID: 11559107]
[59]
Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; Mykkänen, H.; Gylling, H.; Poutanen, K.; Törrönen, R. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res., 2012, 56(10), 1501-1510.
[http://dx.doi.org/10.1002/mnfr.201200195] [PMID: 22961907]
[60]
Biedermann, L.; Mwinyi, J.; Scharl, M.; Frei, P.; Zeitz, J.; Kullak-Ublick, G.A.; Vavricka, S.R.; Fried, M.; Weber, A.; Humpf, H.U.; Peschke, S.; Jetter, A.; Krammer, G.; Rogler, G. Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis — An open pilot study. J. Crohn’s Colitis, 2013, 7(4), 271-279.
[http://dx.doi.org/10.1016/j.crohns.2012.07.010] [PMID: 22883440]
[61]
Berawala, N.R. Anti-inflammatory potential of medicinal plants: A review. International. J. Pharm. Sci., 2015, 6(3), 107-118.
[62]
Benedek, B.; Kopp, B.; Melzig, M.F. Achillea millefolium L. s.l. - Is the anti-inflammatory activity mediated by protease inhibition? J. Ethnopharmacol., 2007, 113(2), 312-317.
[http://dx.doi.org/10.1016/j.jep.2007.06.014] [PMID: 17689902]
[63]
Santosh, V.; Shreesh, O.; Mohammad, R. Anti-inflammatory activity of Aconitum heterophyllum on cotton pellet-induced granuloma in rats. J. Med. Plants Res., 2010, 4(15), 1566-1569.
[64]
Chakraborty, A.; Brantner, A.H. Study of alkaloids from Adhatoda vasica Nees on their antiinflammatory activity. Phytother. Res., 2001, 15(6), 532-534.
[http://dx.doi.org/10.1002/ptr.737] [PMID: 11536385]
[65]
Mulla, W.A.; More, S.D.; Jamge, S.B.; Pawar, A.M.; Kazi, M.S.; Varde, M.R. Evaluation of antiinflammatory and analgesic activities of ethanolic extract of roots Adhatoda vasica Linn. Int. J. Pharm. Tech. Res., 2010, 2(2), 1364-1368.
[66]
Gheware, A.; Dholakia, D.; Kannan, S.; Panda, L.; Rani, R.; Pattnaik, B.R.; Jain, V.; Parekh, Y.; Enayathullah, M.G.; Bokara, K.K.; Subramanian, V.; Mukerji, M.; Agrawal, A.; Prasher, B. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: Potential for repurposing in COVID-19-like conditions. Respir. Res., 2021, 22(1), 99.
[http://dx.doi.org/10.1186/s12931-021-01698-9] [PMID: 33823870]
[67]
Basit, A.; Shutian, T.; Khan, A.; Khan, S.M.; Shahzad, R.; Khan, A.; Khan, S.; Khan, M. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomed. Pharmacother., 2022, 153, 113322.
[http://dx.doi.org/10.1016/j.biopha.2022.113322] [PMID: 35763968]
[68]
Kumar, S.; Bajwa, B.S.; Kuldeep, S.; Kalia, A.N. Anti-inflammatory activity of herbal plants: A review. Int J Adv Pharm Biol Chem., 2013, 2(2), 272-281.
[69]
Saini, N.; Singh, D.; Sandhir, R. Bacopa monnieri prevents colchicine-induced dementia by anti-inflammatory action. Metab. Brain Dis., 2019, 34(2), 505-518.
[http://dx.doi.org/10.1007/s11011-018-0332-1] [PMID: 30604025]
[70]
Channa, S.; Dar, A.; Anjum, S.; Yaqoob, M.; Atta-ur-Rahman Antiinflammatory activity of Bacopa monniera in rodents. J. Ethnopharmacol., 2006, 104(1-2), 286-289.
[http://dx.doi.org/10.1016/j.jep.2005.10.009] [PMID: 16343831]
[71]
Asmawi, M.Z.; Kankaanranta, H.; Moilanen, E.; Vapaatalo, H. Anti-inflammatory activities of Emblica officinalis Gaertn leaf extracts. J. Pharm. Pharmacol., 2011, 45(6), 581-584.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05605.x] [PMID: 7689650]
[72]
Li, W.; Zhang, X.; Chen, R.; Li, Y.; Miao, J.; Liu, G.; Lan, Y.; Chen, Y.; Cao, Y. HPLC fingerprint analysis of Phyllanthus emblica ethanol extract and their antioxidant and anti-inflammatory properties. J. Ethnopharmacol., 2020, 254, 112740.
[http://dx.doi.org/10.1016/j.jep.2020.112740] [PMID: 32151757]
[73]
Tatiya-aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed. Pharmacother., 2019, 111, 705-713.
[http://dx.doi.org/10.1016/j.biopha.2018.12.142] [PMID: 30611995]
[74]
Chadon Alphonsine Assemian, I.C.; Bouyahya, A.; Dakka, N.; Bakri, Y. Garcinia mangostana leaf extracts from ivory coast possess remarkable antioxidant, anti-inflammatory, and cytotoxicological properties. Biomed. Pharmacol. J., 2019, 12(2), 571-578.
[http://dx.doi.org/10.13005/bpj/1676]
[75]
Lim, Y.K.; Yoo, S.Y.; Jang, Y.Y.; Lee, B.C.; Lee, D.S.; Kook, J.K. Anti-inflammatory and in vitro bone formation effects of Garcinia mangostana L. and propolis extracts. Food Sci. Biotechnol., 2020, 29(4), 539-548.
[http://dx.doi.org/10.1007/s10068-019-00697-3] [PMID: 32296565]
[76]
Umamahesh, K.; Ramesh, B.; Vijaya Kumar, B.; Reddy, O.V.S. In vitro anti-oxidant, anti-microbial and anti-inflammatory activities of five Indian cultivars of mango (Mangifera indica L.) fruit peel extracts. Journal of Herbmed Pharmacology, 2019, 8(3), 238-247.
[http://dx.doi.org/10.15171/jhp.2019.35]
[77]
Nemec, M.J.; Kim, H.; Marciante, A.B.; Barnes, R.C.; Hendrick, E.D.; Bisson, W.H.; Talcott, S.T.; Mertens-Talcott, S.U. Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. J. Nutr. Biochem., 2017, 41, 12-19.
[http://dx.doi.org/10.1016/j.jnutbio.2016.11.005] [PMID: 27951515]
[78]
Khumpook, T.; Saenphet, S.; Tragoolpua, Y.; Saenphet, K. Anti-inflammatory and antioxidant activity of Thai mango (Mangifera indica Linn.) leaf extracts. Comp. Clin. Pathol., 2019, 28(1), 157-164.
[http://dx.doi.org/10.1007/s00580-018-2809-z]
[79]
Hussain, A.; Aslam, B.; Muhammad, F.; Faisal, M.N. In vitro Antioxidant Activity and in vivo Anti-inflammatory Effect of Ricinus communis (L.) and Withania somnifera (L.) Hydroalcoholic Extracts in Rats. Braz. Arch. Biol. Technol., 2022, 64, e21200783.
[80]
Ramalingam, S.; Annapurani Evaluation of in vitro and in vivo antiinflammatory activity of flavonoid extract of Thespesia populnea and Tabernaemontana divaricata leaves in Swiss albino mice. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2020, 12(4), 591-597.
[http://dx.doi.org/10.5958/0975-6892.2020.00071.4]
[81]
Sewwandi, U.D.; Ediriweera, E.R.; Ratnasooriya, W.D. Anti-Inflammatory Activity of Aqueous Bark Extract of Thespesia populnea in Rats. Int. J. Ayurveda Pharma Res., 2019, 12(7), 14-19.
[82]
Kumar, P.Y.; Parimalam, M.; Kumar, D.; Joseph, E.; David, D.; Vinolia, R. Screening Of Phytochemicals, Invitro Assessment Of Antioxidant, Anti-Inflammatory, Tlc Profiling And Anticancer Activity Of Aegle Marmelos (L.) Leaves. Ann. Rom. Soc. Cell Biol., 2021, 25(4), 18061-18071.
[83]
Ibrahim, M.; Parveen, B.; Zahiruddin, S.; Gautam, G.; Parveen, R.; Khan, M.A.; Gupta, A.; Ahmad, S. Analysis of polyphenols in Aegle marmelos leaf and ameliorative efficacy against diabetic mice through restoration of antioxidant and anti‐inflammatory status. J. Food Biochem., 2022, 46(4), e13852.
[http://dx.doi.org/10.1111/jfbc.13852] [PMID: 34250628]
[84]
Baptista, A.B.; Sarandy, M.M.; Gonçalves, R.V.; Novaes, R.D.; Gonçalves da Costa, C.; Leite, J.P.V.; Peluzio, M.C.G. Antioxidant and anti-inflammatory effects of Anacardium occidentale L. and Anacardium microcarpum D. extracts on the liver of IL-10 knockout mice. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3054521] [PMID: 33376496]
[85]
Cordaro, M.; Siracusa, R.; Fusco, R.; D’Amico, R.; Peritore, A.F.; Gugliandolo, E.; Genovese, T.; Scuto, M.; Crupi, R.; Mandalari, G.; Cuz-zocrea, S.; Di Paola, R.; Impellizzeri, D. Cashew (Anacardium occidentale L.) nuts counteract oxidative stress and inflammation in an acute experimental model of Carrageenan-induced Paw edema. Antioxidants, 2020, 9(8), 660.
[http://dx.doi.org/10.3390/antiox9080660] [PMID: 32722199]
[86]
Gomes Júnior, A.L.; Islam, M.T.; Nicolau, L.A.D.; de Souza, L.K.M.; Araújo, T.S.L.; Lopes de Oliveira, G.A.; de Melo Nogueira, K.; da Silva Lopes, L.; Medeiros, J.V.R.; Mubarak, M.S.; Melo-Cavalcante, A.A.C. Anti-inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models. ACS Omega, 2020, 5(31), 19506-19515.
[http://dx.doi.org/10.1021/acsomega.0c01775] [PMID: 32803044]
[87]
He, J.B.; Fang, M.J.; Ma, X.Y.; Li, W.J.; Lin, D.S. Angiogenic and anti-inflammatory properties of azadirachtin A improve random skin flap survival in rats. Exp. Biol. Med. (Maywood), 2020, 245(18), 1672-1682.
[http://dx.doi.org/10.1177/1535370220951896] [PMID: 32867550]
[88]
Ilhan, M.; Dereli, F.T.G.; Tümen, I.; Akkol, E.K. Anti-inflammatory and antinociceptive features of Bryonia alba L.: As a possible alternative in treating rheumatism. Open Chem., 2019, 17(1), 23-30.
[http://dx.doi.org/10.1515/chem-2019-0003]
[89]
Chen, Y.; Chi, L.; Liang, X.; Shi, Y.; Wu, T.; Ye, M.; Han, P.; Lin, L.; Zhang, L.; Xu, P.; Du, Z. Essential Oils of Cedrus deodara leaves exerting anti-inflammation on TPA-induced ear edema by inhibiting COX-2/TNF-α/NF-κB activation. J. Essent. Oil-Bear. Plants, 2020, 23(3), 422-431.
[http://dx.doi.org/10.1080/0972060X.2020.1756427]
[90]
Muniz Santana Bastos, E.; Bispo da Silva, A.; Cerqueira Coelho, P.L.; Pereira Borges, J.M.; Amaral da Silva, V.D.; Moreau da Cunha, V.H.; Costa, S.L. Anti-inflammatory activity of Jatropha curcas L. in brain glial cells primary cultures. J. Ethnopharmacol., 2021, 264, 113201.
[http://dx.doi.org/10.1016/j.jep.2020.113201] [PMID: 32814081]
[91]
Mandal, S.C. In-vitro-Scientific evaluation of anti-inflammatory potential of leaf extracts from Vitex negundo: As a promising future drug candidate. International Journal of Green Pharmacy, 2020, 14(1) [IJGP
[92]
Sunayana, N.; Uzma, M.; Dhanwini, R.P.; Govindappa, M.; Prakash, H.S.; Vinay Raghavendra, B. Green synthesis of gold nanoparticles from Vitex negundo leaf extract to inhibit lipopolysaccharide induced inflammation through in vitro and in vivo. J. Cluster Sci., 2020, 31(2), 463-477.
[http://dx.doi.org/10.1007/s10876-019-01661-1]
[93]
Srisook, K.; Jinda, S.; Srisook, E. Anti-inflammatory and antioxidant effects of Pluchea indica leaf extract in TNF-α-induced human endo-thelial cells. Walailak J. Sci. Technol., 2021, 18(10), 10271-10272. [WJST
[http://dx.doi.org/10.48048/wjst.2021.10271]
[94]
Rekha, M.J.; Bettadaiah, B.K.; Sindhu Kanya, T.C.; Govindaraju, K. A feasible method for isolation of pongamol from karanja (Pongamia pinnata) seed and its anti-inflammatory activity. Ind. Crops Prod., 2020, 154, 112720.
[http://dx.doi.org/10.1016/j.indcrop.2020.112720]
[95]
Pei, H.; Xue, L.; Tang, M.; Tang, H.; Kuang, S.; Wang, L.; Ma, X.; Cai, X.; Li, Y.; Zhao, M.; Peng, A.; Ye, H.; Chen, L. Alkaloids from black pepper (Piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB pathway. J. Agric. Food Chem., 2020, 68(8), 2406-2417.
[http://dx.doi.org/10.1021/acs.jafc.9b07754] [PMID: 32031370]
[96]
Osei Akoto, C.; Acheampong, A.; Boakye, Y.D.; Naazo, A.A.; Adomah, D.H. Anti-inflammatory, antioxidant, and anthelmintic activities of Ocimum basilicum (Sweet Basil) fruits. J. Chem., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/2153534]
[97]
Takeuchi, H.; Takahashi-Muto, C.; Nagase, M.; Kassai, M.; Tanaka-Yachi, R.; Kiyose, C. Anti-inflammatory effects of extracts of sweet basil (Ocimum basilicum L.) on a co-culture of 3T3-L1 adipocytes and RAW264. 7 macrophages. J. Oleo Sci., 2020, 69(5), 487-493.
[http://dx.doi.org/10.5650/jos.ess19321] [PMID: 32281564]
[98]
Jyoti, K.; Arora, D.; Fekete, G.; Lendvai, L.; Dogossy, G.; Singh, T. Antibacterial and anti-inflammatory activities of Cassia fistula fungal broth-capped silver nanoparticles. Mater. Technol., 2021, 36(14), 883-893.
[http://dx.doi.org/10.1080/10667857.2020.1802841]
[99]
Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother., 2019, 109, 2561-2572.
[http://dx.doi.org/10.1016/j.biopha.2018.11.116] [PMID: 30551516]
[100]
Brenner, P.S.; Krakauer, T. Regulation of inflammation: A review of recent advances in anti-inflammatory strategies. Curr. Med. Chem. Anti Inflamm. Anti Allergy Agents, 2003, 2(3), 274-283.
[http://dx.doi.org/10.2174/1568014033483752]
[101]
Bianchi, M.E.; Manfredi, A.A. How macrophages ring the inflammation alarm. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 2866-2867.
[http://dx.doi.org/10.1073/pnas.1324285111] [PMID: 24532661]
[102]
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3), 450-462.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[103]
Fujiwara, N.; Kobayashi, K. Macrophages in Inflammation. Curr. Drug Targets Inflamm. Allergy, 2005, 4(3), 281-286.
[http://dx.doi.org/10.2174/1568010054022024] [PMID: 16101534]
[104]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[PMID: 26286636]
[105]
Gunawan, C.; Lim, M.; Marquis, C.P.; Amal, R. Nanoparticle-protein corona complexes govern the biological fates and functions of nano-particles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(15), 2060-2083.
[http://dx.doi.org/10.1039/c3tb21526a] [PMID: 32261489]
[106]
Walkey, C.D.; Chan, W.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev., 2012, 41(7), 2780-2799.
[http://dx.doi.org/10.1039/C1CS15233E] [PMID: 22086677]
[107]
Simkó, M.; Fiedeler, U.; Gazsó, A.; Nentwich, M. The impact of nanoparticles on cellular functions. \. Biology, 2011.http://hw.oeaw.ac.at/nanotrust-dossier
[108]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mecha-nisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5(1), 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[109]
Mahmoudi, M.; Lynch, I.; Ejtehadi, M.R.; Monopoli, M.P.; Bombelli, F.B.; Laurent, S. Protein-nanoparticle interactions: opportunities and challenges. Chem. Rev., 2011, 111(9), 5610-5637.
[http://dx.doi.org/10.1021/cr100440g] [PMID: 21688848]
[110]
Binnemars-Postma, K.A.; ten Hoopen, H.W.M.; Storm, G.; Prakash, J. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: Protein corona as a critical determinant. Nanomedicine (Lond.), 2016, 11(22), 2889-2902.
[http://dx.doi.org/10.2217/nnm-2016-0233] [PMID: 27780415]
[111]
Muñoz, L.E.; Bilyy, R.; Biermann, M.H.C.; Kienhöfer, D.; Maueröder, C.; Hahn, J.; Brauner, J.M.; Weidner, D.; Chen, J.; Scharin-Mehlmann, M.; Janko, C.; Friedrich, R.P.; Mielenz, D.; Dumych, T.; Lootsik, M.D.; Schauer, C.; Schett, G.; Hoffmann, M.; Zhao, Y.; Herrmann, M. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl. Acad. Sci. USA, 2016, 113(40), E5856-E5865.
[http://dx.doi.org/10.1073/pnas.1602230113] [PMID: 27647892]
[112]
Bartneck, M.; Keul, H.A.; Zwadlo-Klarwasser, G.; Groll, J. Phagocytosis independent extracellular nanoparticle clearance by human im-mune cells. Nano Lett., 2010, 10(1), 59-63.
[http://dx.doi.org/10.1021/nl902830x] [PMID: 19994869]
[113]
Engel, A.L.; Holt, G.E.; Lu, H. The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system. Expert Rev. Clin. Pharmacol., 2011, 4(2), 275-289.
[http://dx.doi.org/10.1586/ecp.11.5] [PMID: 21643519]
[114]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[115]
Lafferty, E.I.; Qureshi, S.T.; Schnare, M. The role of toll-like receptors in acute and chronic lung inflammation. J. Inflamm. (Lond.), 2010, 7(1), 57.
[http://dx.doi.org/10.1186/1476-9255-7-57] [PMID: 21108806]
[116]
Kawai, T.; Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci., 2008, 1143(1), 1-20.
[http://dx.doi.org/10.1196/annals.1443.020] [PMID: 19076341]
[117]
Lucarelli, M.; Gatti, A.M.; Savarino, G.; Quattroni, P.; Martinelli, L.; Monari, E.; Boraschi, D. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur. Cytokine Netw., 2004, 15(4), 339-346.
[PMID: 15627643]
[118]
Cui, Y.; Liu, H.; Zhou, M.; Duan, Y.; Li, N.; Gong, X.; Hu, R.; Hong, M.; Hong, F. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J. Biomed. Mater. Res. A, 2011, 96A(1), 221-229.
[http://dx.doi.org/10.1002/jbm.a.32976] [PMID: 21105171]
[119]
Ho, C.C.; Luo, Y.H.; Chuang, T.H.; Yang, C.S.; Ling, Y.C.; Lin, P. Quantum dots induced monocyte chemotactic protein-1 expression via MyD88-dependent Toll-like receptor signaling pathways in macrophages. Toxicology, 2013, 308, 1-9.
[http://dx.doi.org/10.1016/j.tox.2013.03.003] [PMID: 23499856]
[120]
Chang, H.; Ho, C.C.; Yang, C.S.; Chang, W.H.; Tsai, M.H.; Tsai, H.T.; Lin, P. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. Exp. Toxicol. Pathol., 2013, 65(6), 887-896.
[http://dx.doi.org/10.1016/j.etp.2013.01.001] [PMID: 23352990]
[121]
Elsabahy, M.; Wooley, K.L. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev., 2013, 42(12), 5552-5576.
[http://dx.doi.org/10.1039/c3cs60064e] [PMID: 23549679]
[122]
Schanen, B.C.; Karakoti, A.S.; Seal, S.; Drake, D.R., III; Warren, W.L.; Self, W.T. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano, 2009, 3(9), 2523-2532.
[http://dx.doi.org/10.1021/nn900403h] [PMID: 19769402]
[123]
Ghoneum, M.; Ghoneum, A.; Gimzewski, J. Nanodiamond and nanoplatinum liquid, DPV576, activates human monocyte-derived dendritic cells in vitro. Anticancer Res., 2010, 30(10), 4075-4079.
[PMID: 21036722]
[124]
Hanley, C.; Thurber, A.; Hanna, C.; Punnoose, A.; Zhang, J.; Wingett, D.G. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res. Lett., 2009, 4(12), 1409-1420.
[http://dx.doi.org/10.1007/s11671-009-9413-8] [PMID: 20652105]
[125]
Weissleder, R.; Nahrendorf, M.; Pittet, M.J. Imaging macrophages with nanoparticles. Nat. Mater., 2014, 13(2), 125-138.
[http://dx.doi.org/10.1038/nmat3780] [PMID: 24452356]
[126]
Ahn, S.; Lee, I.H.; Kang, S.; Kim, D.; Choi, M.; Saw, P.E.; Shin, E.C.; Jon, S. Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy. Adv. Healthc. Mater., 2014, 3(8), 1194-1199.
[http://dx.doi.org/10.1002/adhm.201300597] [PMID: 24652754]
[127]
Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J. Cell Biol., 2012, 198(5), 773-783.
[http://dx.doi.org/10.1083/jcb.201203170] [PMID: 22945932]
[128]
Wang, Z.; Li, J.; Cho, J.; Malik, A.B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol., 2014, 9(3), 204-210.
[http://dx.doi.org/10.1038/nnano.2014.17] [PMID: 24561355]
[129]
Chen, E.Y.; Garnica, M.; Wang, Y.C.; Mintz, A.J.; Chen, C.S.; Chin, W.C. A mixture of anatase and rutile TiO2 nanoparticles induces his-tamine secretion in mast cells. Part. Fibre Toxicol., 2012, 9(1), 2.
[http://dx.doi.org/10.1186/1743-8977-9-2] [PMID: 22260553]
[130]
St John, A.L.; Chan, C.Y.; Staats, H.F.; Leong, K.W.; Abraham, S.N. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nat. Mater., 2012, 11(3), 250-257.
[http://dx.doi.org/10.1038/nmat3222] [PMID: 22266469]
[131]
Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol., 2008, 9(5), 503-510.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[132]
Ishigami, S.; Natsugoe, S.; Tokuda, K.; Nakajo, A.; Che, X.; Iwashige, H.; Aridome, K.; Hokita, S.; Aikou, T. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer, 2000, 88(3), 577-583.
[http://dx.doi.org/10.1002/(SICI)1097-0142(20000201)88:3<577:AID-CNCR13>3.0.CO;2-V] [PMID: 10649250]
[133]
Jang, E.S.; Shin, J.H.; Ren, G.; Park, M.J.; Cheng, K.; Chen, X.; Wu, J.C.; Sunwoo, J.B.; Cheng, Z. The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles. Biomaterials, 2012, 33(22), 5584-5592.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.041] [PMID: 22575830]
[134]
Luo, Y.H.; Chang, L.W.; Lin, P. Metal-based nanoparticles and the immune system: Activation, inflammation, and potential applications. BioMed Res. Int., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/143720] [PMID: 26125021]
[135]
Seisenbaeva, G.A.; Fromell, K.; Vinogradov, V.V.; Terekhov, A.N.; Pakhomov, A.V.; Nilsson, B.; Ekdahl, K.N.; Vinogradov, V.V.; Kessler, V.G. Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci. Rep., 2017, 7(1), 15448.
[http://dx.doi.org/10.1038/s41598-017-15792-w] [PMID: 29133853]
[136]
Sonmez, O.; Sonmez, M. Role of platelets in immune system and inflammation. Porto Biomed. J., 2017, 2(6), 311-314.
[http://dx.doi.org/10.1016/j.pbj.2017.05.005] [PMID: 32258788]
[137]
Chen, D.; Dorling, A. Critical roles for thrombin in acute and chronic inflammation. J. Thromb. Haemost., 2009, 7(Suppl. 1), 122-126.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03413.x] [PMID: 19630783]
[138]
Piazza, O.; Scarpati, G.; Cotena, S.; Lonardo, M.; Tufano, R. Thrombin antithrombin complex and IL-18 serum levels in stroke patients. Neurol. Int., 2010, 2(1), 1.
[http://dx.doi.org/10.4081/ni.2010.e1] [PMID: 21577333]
[139]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[140]
Sumbayev, V.V.; Yasinska, I.M.; Garcia, C.P.; Gilliland, D.; Lall, G.S.; Gibbs, B.F.; Bonsall, D.R.; Varani, L.; Rossi, F.; Calzolai, L. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small, 2013, 9(3), 472-477.
[http://dx.doi.org/10.1002/smll.201201528] [PMID: 23112137]
[141]
Kingston, M.; Pfau, J.C.; Gilmer, J.; Brey, R. Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells. J. Immunotoxicol., 2016, 13(2), 198-208.
[http://dx.doi.org/10.3109/1547691X.2015.1035819] [PMID: 25875326]
[142]
Schabbauer, G.; Tencati, M.; Pedersen, B.; Pawlinski, R.; Mackman, N. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1963-1969.
[http://dx.doi.org/10.1161/01.ATV.0000143096.15099.ce] [PMID: 15319270]
[143]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[144]
Hommes, D.W.; Peppelenbosch, M.P.; van Deventer, S.J. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut, 2003, 52(1), 144-151.
[http://dx.doi.org/10.1136/gut.52.1.144] [PMID: 12477778]
[145]
Yang, X.; Liang, L.; Zong, C.; Lai, F.; Zhu, P.; Liu, Y.; Jiang, J.; Yang, Y.; Gao, L.; Ye, F.; Zhao, Q.; Li, R.; Han, Z.; Wei, L. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget, 2016, 7(2), 1084-1095.
[http://dx.doi.org/10.18632/oncotarget.6744] [PMID: 26716516]
[146]
de Carvalho, T.G.; Garcia, V.B.; de Araújo, A.A.; da Silva Gasparotto, L.H.; Silva, H.; Guerra, G.C.B.; de Castro Miguel, E.; de Carvalho Leitão, R.F.; da Silva Costa, D.V.; Cruz, L.J.; Chan, A.B.; de Araújo Júnior, R.F. Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. Int. J. Pharm., 2018, 548(1), 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.008] [PMID: 29886101]
[147]
Lee, C.G.; Link, H.; Baluk, P.; Homer, R.J.; Chapoval, S.; Bhandari, V.; Kang, M.J.; Cohn, L.; Kim, Y.K.; McDonald, D.M.; Elias, J.A. Vas-cular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat. Med., 2004, 10(10), 1095-1103.
[http://dx.doi.org/10.1038/nm1105] [PMID: 15378055]
[148]
Barnes, P.J. Th2 cytokines and asthma: An introduction. Respir. Res., 2001, 2(2), 64-65.
[http://dx.doi.org/10.1186/rr39] [PMID: 11686866]
[149]
Sheikpranbabu, S.; Kalishwaralal, K.; Venkataraman, D.; Eom, S.H.; Park, J.; Gurunathan, S. Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J. Nanobiotechnology, 2009, 7(1), 8.
[http://dx.doi.org/10.1186/1477-3155-7-8] [PMID: 19878566]
[150]
Imtiyaz, H.Z.; Simon, M.C. Hypoxia-inducible factors as essential regulators of inflammation; Diverse Effects of Hypoxia on Tumor Progression, 2010, pp. 105-120.
[http://dx.doi.org/10.1007/82_2010_74]
[151]
Lin, N.; Simon, M.C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J. Clin. Invest., 2016, 126(10), 3661-3671.
[http://dx.doi.org/10.1172/JCI84426] [PMID: 27599290]
[152]
Yang, T.; Yao, Q.; Cao, F.; Liu, Q.; Liu, B.; Wang, X. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomedicine, 2016, 11, 6679-6692.
[http://dx.doi.org/10.2147/IJN.S109695] [PMID: 27994464]
[153]
Evans, C.M.; Kim, K.; Tuvim, M.J.; Dickey, B.F. Mucus hypersecretion in asthma: Causes and effects. Curr. Opin. Pulm. Med., 2009, 15(1), 4-11.
[http://dx.doi.org/10.1097/MCP.0b013e32831da8d3] [PMID: 19077699]
[154]
Jang, S.; Park, J.W.; Cha, H.R.; Jung, S.Y.; Lee, J.E.; Jung, S.S.; Kim, J.O.; Kim, S.Y.; Lee, C.S.; Park, H.S. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int. J. Nanomedicine, 2012, 7, 1329-1343.
[PMID: 22457593]
[155]
Franková, J.; Pivodová, V.; Vágnerová, H.; Juránová, J.; Ulrichová, J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J. Appl. Biomater. Funct. Mater., 2016, 14(2), 0.
[http://dx.doi.org/10.5301/jabfm.5000268] [PMID: 26952588]
[156]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[157]
Liang, D.Y.; Li, X.; Li, W.W.; Fiorino, D.; Qiao, Y.; Sahbaie, P.; Yeomans, D.C.; Clark, J.D. Caspase-1 modulates incisional sensitization and inflammation. Anesthesiology, 2010, 113(4), 945-956.
[http://dx.doi.org/10.1097/ALN.0b013e3181ee2f17] [PMID: 20823759]
[158]
Amin, K. The role of mast cells in allergic inflammation. Respir. Med., 2012, 106(1), 9-14.
[http://dx.doi.org/10.1016/j.rmed.2011.09.007] [PMID: 22112783]
[159]
Kim, M.H.; Jeong, H.J. Zinc oxide nanoparticles suppress LPS-induced NF-κB activation by inducing A20, a negative regulator of NF-κB, in RAW 264.7 macrophages. J. Nanosci. Nanotechnol., 2015, 15(9), 6509-6515.
[http://dx.doi.org/10.1166/jnn.2015.10319] [PMID: 26716206]
[160]
Kim, M.H.; Seo, J.H.; Kim, H.M.; Jeong, H.J. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells. J. Biomater. Appl., 2016, 30(9), 1407-1416.
[http://dx.doi.org/10.1177/0885328216629822] [PMID: 26825457]
[161]
Li, J.; Chen, H.; Wang, B.; Cai, C.; Yang, X.; Chai, Z.; Feng, W. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci. Rep., 2017, 7(1), 43126.
[http://dx.doi.org/10.1038/srep43126] [PMID: 28233796]
[162]
Allakhverdi, Z.; Comeau, M.R.; Jessup, H.K.; Yoon, B.R.P.; Brewer, A.; Chartier, S.; Paquette, N.; Ziegler, S.F.; Sarfati, M.; Delespesse, G. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med., 2007, 204(2), 253-258.
[http://dx.doi.org/10.1084/jem.20062211] [PMID: 17242164]
[163]
Yan, H.X.; Wu, H.P.; Zhang, H.L.; Ashton, C.; Tong, C.; Wu, H.; Qian, Q.J.; Wang, H.Y.; Ying, Q.L. p53 promotes inflammation-associated hepatocarcinogenesis by inducing HMGB1 release. J. Hepatol., 2013, 59(4), 762-768.
[http://dx.doi.org/10.1016/j.jhep.2013.05.029] [PMID: 23714159]
[164]
Magna, M.; Pisetsky, D.S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med., 2014, 20(1), 138-146.
[http://dx.doi.org/10.2119/molmed.2013.00164] [PMID: 24531836]
[165]
Eliopoulos, A.G.; Dumitru, C.D.; Wang, C.C.; Cho, J.; Tsichlis, P.N. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J., 2002, 21(18), 4831-4840.
[http://dx.doi.org/10.1093/emboj/cdf478] [PMID: 12234923]
[166]
Britt, R.D., Jr; Locy, M.L.; Tipple, T.E.; Nelin, L.D.; Rogers, L.K. Lipopolysaccharide-induced cyclooxygenase-2 expression in mouse transformed Clara cells. Cell. Physiol. Biochem., 2012, 29(1-2), 213-222.
[http://dx.doi.org/10.1159/000337602] [PMID: 22415090]
[167]
Tripathi, P.; Tripathi, P.; Kashyap, L.; Singh, V. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol., 2007, 51(3), 443-452.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00329.x] [PMID: 17903207]
[168]
Zhu, C.; Zhang, S.; Song, C.; Zhang, Y.; Ling, Q.; Hoffmann, P.R.; Li, J.; Chen, T.; Zheng, W.; Huang, Z. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation. J. Nanobiotechnology, 2017, 15(1), 20.
[http://dx.doi.org/10.1186/s12951-017-0252-y] [PMID: 28049488]
[169]
Lu, Y.; Zhu, D.; Gui, L.; Li, Y.; Wang, W.; Liu, J.; Wang, Y. A dual-targeting ruthenium nanodrug that inhibits primary tumor growth and lung metastasis via the PARP/ATM pathway. J. Nanobiotechnology, 2021, 19(1), 115.
[http://dx.doi.org/10.1186/s12951-021-00799-3] [PMID: 33892746]
[170]
Miao, Z.; Jiang, S.; Ding, M.; Sun, S.; Ma, Y.; Younis, M.R.; He, G.; Wang, J.; Lin, J.; Cao, Z.; Huang, P.; Zha, Z. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett., 2020, 20(5), 3079-3089.
[http://dx.doi.org/10.1021/acs.nanolett.9b05035] [PMID: 32348149]
[171]
Jeong, H.G.; Cha, B.G.; Kang, D.W.; Kim, D.Y.; Yang, W.; Ki, S.K.; Kim, S.I.; Han, J.; Kim, C.K.; Kim, J.; Lee, S.H. Ceria nanoparticles fabricated with 6‐aminohexanoic acid that overcome systemic inflammatory response syndrome. Adv. Healthc. Mater., 2019, 8(9), 1801548.
[http://dx.doi.org/10.1002/adhm.201801548] [PMID: 30843374]
[172]
Kim, J.; Hong, G.; Mazaleuskaya, L.; Hsu, J.C.; Rosario-Berrios, D.N.; Grosser, T.; Cho-Park, P.F.; Cormode, D.P. Ultrasmall antioxidant cerium oxide nanoparticles for regulation of acute inflammation. ACS Appl. Mater. Interfaces, 2021, 13(51), 60852-60864.
[http://dx.doi.org/10.1021/acsami.1c16126] [PMID: 34914872]
[173]
Li, F.; Qiu, Y.; Xia, F.; Sun, H.; Liao, H.; Xie, A.; Lee, J.; Lin, P.; Wei, M.; Shao, Y.; Yang, B.; Weng, Q.; Ling, D. Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today, 2020, 35, 100925.
[http://dx.doi.org/10.1016/j.nantod.2020.100925]
[174]
Rehman, M.U.; Yoshihisa, Y.; Miyamoto, Y.; Shimizu, T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res., 2012, 61(11), 1177-1185.
[http://dx.doi.org/10.1007/s00011-012-0512-0] [PMID: 22752115]
[175]
Fahmy, S.A.; Preis, E.; Bakowsky, U.; Azzazy, H.M.E.S. Platinum nanoparticles: Green synthesis and biomedical applications. Molecules, 2020, 25(21), 4981.
[http://dx.doi.org/10.3390/molecules25214981] [PMID: 33126464]
[176]
Zhu, S.; Zeng, M.; Feng, G.; Wu, H. Platinum nanoparticles as a therapeutic agent against dextran sodium sulfate-induced colitis in mice. Int. J. Nanomedicine, 2019, 14, 8361-8378.
[http://dx.doi.org/10.2147/IJN.S210655] [PMID: 31749615]
[177]
LoPresti, S.T.; Popovic, B.; Kulkarni, M.; Skillen, C.D.; Brown, B.N. Free radical-decellularized tissue promotes enhanced antioxidant and anti-inflammatory macrophage response. Biomaterials, 2019, 222, 119376.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119376] [PMID: 31445321]
[178]
Peng, Y.; He, D.; Ge, X.; Lu, Y.; Chai, Y.; Zhang, Y.; Mao, Z.; Luo, G.; Deng, J.; Zhang, Y. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition. Bioact. Mater., 2021, 6(10), 3109-3124.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.006] [PMID: 33778192]
[179]
Muniyappan, N.; Pandeeswaran, M.; Amalraj, A. Green synthesis of gold nanoparticles using Curcuma pseudomontana isolated curcumin: Its characterization, antimicrobial, antioxidant and anti- inflammatory activities. Environmental Chemistry and Ecotoxicology, 2021, 3, 117-124.
[http://dx.doi.org/10.1016/j.enceco.2021.01.002]
[180]
Khuda, F.; Ul Haq, Z.; Ilahi, I.; Ullah, R.; Khan, A.; Fouad, H.; Ali Khan Khalil, A.; Ullah, Z.; Umar Khayam Sahibzada, M.; Shah, Y.; Abbas, M.; Iftikhar, T.; El-Saber Batiha, G. Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. Arab. J. Chem., 2021, 14(10), 103343.
[http://dx.doi.org/10.1016/j.arabjc.2021.103343]
[181]
Uzma, M.; Dhanwini, R.P.; Sunayana, N.; Raghavendra, V.B.; Shilpashree, H.P. Studies of in vitro antioxidant and anti-inflammatory activities of gold nanoparticles biosynthesised from a medicinal plant, Commiphora wightii. Mater. Technol., In Press
[182]
Fereig, S.A.; El-Zaafarany, G.M.; Arafa, M.G.; Abdel-Mottaleb, M.M.A. Boosting the anti-inflammatory effect of self-assembled hybrid lecithin-chitosan nanoparticles via hybridization with gold nanoparticles for the treatment of psoriasis: Elemental mapping and in vivo modeling. Drug Deliv., 2022, 29(1), 1726-1742.
[http://dx.doi.org/10.1080/10717544.2022.2081383] [PMID: 35635314]
[183]
Khan, S.A.; Murad, U. Barkatullah; Ibrar, M.; Ullah, S.; Khattak, U. Synthesis of silver and gold nanoparticles from leaf of Litchi chinen-sis and its biological activities. Asian Pac. J. Trop. Biomed., 2018, 8(3), 142.
[http://dx.doi.org/10.4103/2221-1691.227995]
[184]
Ozdal, ZD; Sahmetlioglu, E; Narin, I; Cumaoglu, A Synthesis of gold and silver nanoparticles using flavonoid quercetin and their effects on lipopolysaccharide induced inflammatory response in microglial cells. 3 Biotech, 2019, 9(6), 1-8.
[185]
Singh, A.K.; Tripathi, Y.B.; Pandey, N.; Singh, D.P.; Tripathi, D.; Srivastava, O.N. Enhanced antilipopolysaccharide (LPS) induced changes in macrophage functions by Rubia cordifolia (RC) embedded with Au nanoparticles. Free Radic. Biol. Med., 2013, 65, 217-223.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.006] [PMID: 23774043]
[186]
Kwak, G.Y.; Han, Y.; Baik, S.; Kong, B.M.; Yang, D.C.; Kang, S.C.; Sukweenadhi, J. Gold Nanoparticles Green-Synthesized by the Suaeda japonica Leaf Extract and Screening of Anti-Inflammatory Activities on RAW 267.4 Macrophages. Coatings, 2022, 12(4), 460.
[http://dx.doi.org/10.3390/coatings12040460]
[187]
Khanzada, B.; Akthar, N.; Bhatti, M.Z.; Ismail, H.; Alqarni, M.; Mirza, B.; Mostafa-Hedeab, G.; Batiha, G.E-S. Green Synthesis of Gold and Iron Nanoparticles for Targeted Delivery: An in vitro and in vivo Study. J. Chem., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/1581444]
[188]
Singh, P.; Ahn, S.; Kang, J.P.; Veronika, S.; Huo, Y.; Singh, H.; Chokkaligam, M.; El-Agamy Farh, M.; Aceituno, V.C.; Kim, Y.J.; Yang, D.C. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: A green synthetic approach. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2022-2032.
[PMID: 29190154]
[189]
Islam, N.U.; Amin, R.; Shahid, M.; Amin, M.; Zaib, S.; Iqbal, J. A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory and analgesic properties. BMC Complement. Altern. Med., 2017, 17(1), 276.
[http://dx.doi.org/10.1186/s12906-017-1791-3] [PMID: 28535789]
[190]
Belle Ebanda Kedi, P.; Eya’ane Meva, F.; Kotsedi, L.; Nguemfo, E.L.; Bogning Zangueu, C.; Ntoumba, A.A.; Mohamed, H.; Dongmo, A.B.; Maaza, M. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle mediated Selaginella myosurus aqueous extract. Int. J. Nanomedicine, 2018, 13, 8537-8548.
[http://dx.doi.org/10.2147/IJN.S174530] [PMID: 30587976]
[191]
Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep., 2020, 39(7), 921-939.
[http://dx.doi.org/10.1007/s00299-020-02539-7] [PMID: 32300886]
[192]
Philippe, B.E.K.; Etah, B.N.; Deli, V.; Gbambie, A.P.; Ntoumba, A.A.; Kökҫam-Demir, Ü. In vitro and in vivo anti-inflammatory activity of green synthesized silver nanoparticles from the aqueous bark extract of Mangifera indica Linn. (Anacardiaceae). International Journal of Green and Herbal Chemistry, 2020, 9(3), 345-360.
[http://dx.doi.org/10.24214/IJGHC/HC/9/3/34560]
[193]
Ilahi, I.; Khuda, F.; Umar Khayam Sahibzada, M.; Alghamdi, S.; Ullah, R. Zakiullah; Dablool, A.S.; Alam, M.; Khan, A.; Ali Khan Khalil, A. Synthesis of silver nanoparticles using root extract of Duchesnea indica and assessment of its biological activities. Arab. J. Chem., 2021, 14(5), 103110.
[http://dx.doi.org/10.1016/j.arabjc.2021.103110]
[194]
Anwar, S.A.; Almatroodi, S.; Almatroudi, A.; Allemailem, K.S.; Joseph, R.J.; Khan, A.A.; Alrumaihi, F.; Alsahli, M.A.; Husain Rahmani, A. Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: An effective approach for attenuation of oxidative stress mediated diseases. Int. J. Food Prop., 2021, 24(1), 677-701.
[http://dx.doi.org/10.1080/10942912.2021.1914083]
[195]
Ganesh, S.; Arthanari, A.; Rajeshkumar, S. Anti-Inflammatory activity of Centella asiatica mediated silver nanoparticles. J. Res. Med. Dent. Sci., 2022, 10(1), 325-329.
[196]
Varghese, R.E. D, R.; Sivaraj, S.; Gayathri, D.; Kannayiram, G. Anti-inflammatory activity of Syzygium aromaticum silver nanoparticles: in vitro and in silico study. Asian J. Pharm. Clin. Res., 2017, 10(11), 370-373.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i11.19904]
[197]
Jain, A.; Anitha, R.; Rajeshkumar, S. Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Research Journal of Pharmacy and Technology, 2019, 12(6), 2790-2793.
[http://dx.doi.org/10.5958/0974-360X.2019.00469.4]
[198]
Kedi, P.B.; Nanga, C.C.; Gbambie, A.P.; Deli, V.; Meva, F.E.; Mohamed, H.E.; Ntoumba, A.A. Nko&rs MH. Biosynthesis of silver nanoparticles from Microsorum punctatum (l.) copel fronds extract and an in-vitro anti-inflammation study. Journal of Nanotechnology Re-search., 2020, 2(2), 25-41.
[199]
Prabakaran, A.S.; Mani, N. Anti-inflammatory activity of silver nanoparticles synthesized from Eichhornia crassipes: An in vitro study. J. Pharmacogn. Phytochem., 2019, 8(4), 2556-2558.
[200]
Khader, S.Z.A.; Ahmed, S.S.Z.; Mahboob, M.R.; Prabaharan, S.B.; Lakshmanan, S.O.; Kumar, K.R.; David, D. In vitro anti-inflammatory, anti-arthritic and anti- proliferative activity of green synthesized silver nanoparticles - Phoenix dactylifera (Rothan dates). Braz. J. Pharm. Sci., 2022, 58, e18594.
[http://dx.doi.org/10.1590/s2175-97902022e18594]
[201]
Shehensha, S.; Jyothi, M.V. Anti-inflammatory activity of Nigella sativa oil mediated silver nanoparticles. Pharmacogn. J., 2020, 12(5), 1086-1092.
[http://dx.doi.org/10.5530/pj.2020.12.153]
[202]
Vijayaraj, R.; Kumar, K.N.; Mani, P.; Senthil, J.; Kumar, G.D.; Jayaseelan, T. Green synthesis of silver nanoparticles from ethanolic seed extract of Acranythes aspera (Linn.) and its anti-inflammatory activities. Int J Pharm Ther., 2016, 7, 42-48.
[203]
Moldovan, B.; David, L.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Baldea, I.; Clichici, S.; Filip, G.A. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater. Sci. Eng. C, 2017, 79, 720-727.
[http://dx.doi.org/10.1016/j.msec.2017.05.122] [PMID: 28629073]
[204]
Govindappa, M.; Hemashekhar, B.; Arthikala, M.K.; Ravishankar Rai, V.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys., 2018, 9, 400-408.
[http://dx.doi.org/10.1016/j.rinp.2018.02.049]
[205]
Raguraman, V.; L, S.A.; D, M.A.; G, N.; R, T.; R, K.; N, T. Unraveling rapid extraction of fucoxanthin from Padina tetrastromatica: Purification, characterization and biomedical application. Process Biochem., 2018, 73, 211-219.
[http://dx.doi.org/10.1016/j.procbio.2018.08.006]
[206]
Baharara, J.; Ramezani, T.; Mousavi, M.; Asadi-Samani, M. Antioxidant and anti-inflammatory activity of green synthesized silver nanoparticles using Salvia officinalis extract. Ann. Trop. Med. Public Health, 2017, 10(5)
[207]
Erjaee, H.; Nazifi, S.; Rajaian, H. Effect of Ag‐NPs synthesised by Chamaemelum nobile extract on the inflammation and oxidative stress induced by carrageenan in mice paw. IET Nanobiotechnol., 2017, 11(6), 695-701.
[http://dx.doi.org/10.1049/iet-nbt.2016.0245]
[208]
Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.M.; Kim, K.J.; Shin, H.M. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B, 2015, 146, 10-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.02.008] [PMID: 25777265]
[209]
Liu, H.; Kang, P.; Liu, Y.; An, Y.; Hu, Y.; Jin, X.; Cao, X.; Qi, Y.; Ramesh, T.; Wang, X. Zinc oxide nanoparticles synthesised from the Vernonia amygdalina shows the anti-inflammatory and antinociceptive activities in the mice model. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1068-1078.
[http://dx.doi.org/10.1080/21691401.2020.1809440] [PMID: 32815404]
[210]
Jan, H.; Shah, M.; Andleeb, A.; Faisal, S.; Khattak, A.; Rizwan, M.; Drouet, S.; Hano, C.; Abbasi, B.H. Plant-based synthesis of zinc oxide nanoparticles (ZnO-NPs) using aqueous leaf extract of aquilegia pubiflora: Their antiproliferative activity against HepG2 cells inducing re-active oxygen species and other in vitro properties. Oxid. Med. Cell. Longev., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/4786227] [PMID: 34457112]
[211]
Jayappa, M.D.; Ramaiah, C.K.; Kumar, M.A.P.; Suresh, D.; Prabhu, A.; Devasya, R.P.; Sheikh, S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci., 2020, 10(8), 3057-3074.
[http://dx.doi.org/10.1007/s13204-020-01382-2] [PMID: 32421069]
[212]
Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I.M. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng., 2018, 41(1), 21-30.
[http://dx.doi.org/10.1007/s00449-017-1840-9] [PMID: 28916855]
[213]
Yadav, E.; Singh, D.; Yadav, P.; Verma, A. Ameliorative effect of biofabricated ZnO nanoparticles of Trianthema portulacastrum Linn. on dermal wounds via removal of oxidative stress and inflammation. RSC Advances, 2018, 8(38), 21621-21635.
[http://dx.doi.org/10.1039/C8RA03500H] [PMID: 35539937]
[214]
Thatoi, P.; Kerry, R.G.; Gouda, S.; Das, G.; Pramanik, K.; Thatoi, H.; Patra, J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B, 2016, 163, 311-318.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.029] [PMID: 27611454]
[215]
Madhumitha, B.; Santhakumar, P.; Jeevitha, M.; Rajeshkumar, S. Green synthesis of selenium nanoparticle using Capparis decidua fruit extract and its characterization using Transmission Electron Microscopy And UV-Visible spectroscopy. Research Journal of Pharmacy and Technology, 2021, 14(4), 2129-2132.
[http://dx.doi.org/10.52711/0974-360X.2021.00377]
[216]
Kumar, S.R.; Geetha, R.V.; Sushma, B. Boerhavia diffusa Mediated Selenium Nanoparticles and their Antioxidant and Anti-Inflammatory Activity. J. Pharm. Res. Int., 2021, 343-350.
[217]
Vennila, K.; Chitra, L.; Balagurunathan, R.; Palvannan, T. Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9(1), 015005.
[http://dx.doi.org/10.1088/2043-6254/aa9f4d]
[218]
Pratheema, P.; Gurupriya, S.; Ramesh, J.; Cathrine, L.; Pratheema, P. Anti-Inflammatory and anti-bacterial activity of titanium nanoparticles synthesized from rhizomes of Alpinia calcarata. Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6(3), 2472-2477.
[http://dx.doi.org/10.22214/ijraset.2018.3563]
[219]
Thangavelu, L.; Rajeshkumar, S.; Arivarasu, L.; Aditya, B.S. Antioxidant and anti-inflammatory activity of titanium dioxide nanoparticles synthesised using Mucuna pruriens. J. Pharm. Res. Int., 2021, 33(62A), 414-422.
[220]
Harwansh, R.K.; Deshmukh, R. Formulation and evaluation of sodium alginate and guar gum based glycyrrhizin loaded mucoadhesive microspheres for management of peptic ulcer. Indian Journal of Pharmaceutical Education and Research, 2021, 55(3), 728-737.
[http://dx.doi.org/10.5530/ijper.55.3.145]
[221]
Rahman, M.A.; Abul Barkat, H.; Harwansh, R.K.; Deshmukh, R. Carbon-based nanomaterials: Carbon nanotubes, graphene, and fullerenes for the control of burn infections and wound healing. Curr. Pharm. Biotechnol., 2022, 23(12), 1483-1496.
[http://dx.doi.org/10.2174/1389201023666220309152340] [PMID: 35264085]
[222]
Bahadur, S.; Sachan, N.; Harwansh, R.K.; Deshmukh, R. Nanoparticlized system: Promising approach for the management of Alzheimer’s disease through intranasal delivery. Curr. Pharm. Des., 2020, 26(12), 1331-1344.
[http://dx.doi.org/10.2174/1381612826666200311131658] [PMID: 32160843]
[223]
Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for cns disorders. Pharmaceutics, 2020, 12(12), 1230.
[http://dx.doi.org/10.3390/pharmaceutics12121230] [PMID: 33352959]
[224]
Available at URL: https://www.nparks.gov.sg/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy