Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Development and Challenges of Synthetic Retinoid Formulations in Cancer

Author(s): Sara Assi, Hiba El Hajj, Berthe Hayar, Claudio Pisano, Walid Saad* and Nadine Darwiche*

Volume 20, Issue 9, 2023

Published on: 05 September, 2022

Page: [1314 - 1326] Pages: 13

DOI: 10.2174/1567201819666220810094708

Price: $65

Abstract

Retinoids represent a class of chemical compounds derived from or structurally and functionally related to vitamin A. Retinoids play crucial roles in regulating a range of crucial biological processes spanning embryonic development to adult life. These include regulation of cell proliferation, differentiation, and cell death. Due to their promising characteristics, retinoids emerged as potent anti-cancer agents, and their effects were validated in vitro and in vivo preclinical models of several solid and hematological malignancies. However, their clinical translation remained limited due to poor water solubility, photosensitivity, short half-life, and toxicity. The development of retinoid delivery formulations was extensively studied to overcome these limitations. This review will summarize some preclinical and commercial synthetic retinoids in cancer and discuss their different delivery systems.

Keywords: Synthetic retinoid, delivery system, formulation, development, drug, cancer.

Graphical Abstract
[1]
Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of vitamin A: A review. Trends Food Sci. Technol., 2016, 51, 76-87.
[http://dx.doi.org/10.1016/j.tifs.2016.03.001]
[2]
Dobrotkova, V.; Chlapek, P.; Mazanek, P.; Sterba, J.; Veselska, R. Traffic lights for retinoids in oncology: Molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer, 2018, 18(1), 1059.
[http://dx.doi.org/10.1186/s12885-018-4966-5] [PMID: 30384831]
[3]
Gudas, L.J. Synthetic retinoids beyond cancer therapy. Annu. Rev. Pharmacol. Toxicol., 2021, 62.
[PMID: 34516292]
[4]
Karrer, P.; Morf, R.; Schopp, K. Information on vitamine A from train-oil. Helv. Chim. Acta, 1931, 14, 1035-1040.
[5]
Khalil, S.; Bardawil, T.; Stephan, C.; Darwiche, N.; Abbas, O.; Kibbi, A.G.; Nemer, G.; Kurban, M. Retinoids: A journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J. Dermatolog. Treat., 2017, 28(8), 684-696.
[http://dx.doi.org/10.1080/09546634.2017.1309349] [PMID: 28318351]
[6]
Ablain, J.; de Thé, H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int. J. Cancer, 2014, 135(10), 2262-2272.
[http://dx.doi.org/10.1002/ijc.29081] [PMID: 25130873]
[7]
Beckenbach, L.; Baron, J.M.; Merk, H.F.; Löffler, H.; Amann, P.M. Retinoid treatment of skin diseases. Eur. J. Dermatol., 2015, 25(5), 384-391.
[http://dx.doi.org/10.1684/ejd.2015.2544] [PMID: 26069148]
[8]
Mukherjee, S.; Date, A.; Patravale, V.; Korting, H.C.; Roeder, A.; Weindl, G. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety. Clin. Interv. Aging, 2006, 1(4), 327-348.
[http://dx.doi.org/10.2147/ciia.2006.1.4.327] [PMID: 18046911]
[9]
Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci., 2010, 67(9), 1423-1445.
[http://dx.doi.org/10.1007/s00018-010-0268-z] [PMID: 20140749]
[10]
Muindi, J.; Frankel, S.R.; Miller, W.H., Jr; Jakubowski, A.; Scheinberg, D.A.; Young, C.W.; Dmitrovsky, E.; Warrell, R.P., Jr Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: Implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood, 1992, 79(2), 299-303.
[http://dx.doi.org/10.1182/blood.V79.2.299.299] [PMID: 1309668]
[11]
Szuts, E.Z.; Harosi, F.I. Solubility of retinoids in water. Arch. Biochem. Biophys., 1991, 287(2), 297-304.
[http://dx.doi.org/10.1016/0003-9861(91)90482-X] [PMID: 1898007]
[12]
di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med., 2015, 41, 1-115.
[http://dx.doi.org/10.1016/j.mam.2014.12.003] [PMID: 25543955]
[13]
Vahlquist, A. Retinoids and the skin: From vitamin A in human epidermis to the pharmacology of oral retinoids in dermatology. Basic Clin. Dermatol., 2007, 39, 55.
[http://dx.doi.org/10.3109/9781420021189.003]
[14]
Hail, N., Jr; Kim, H.J.; Lotan, R. Mechanisms of fenretinide-induced apoptosis. Apoptosis, 2006, 11(10), 1677-1694.
[http://dx.doi.org/10.1007/s10495-006-9289-3] [PMID: 16850162]
[15]
Parrella, E.; Giannì, M.; Fratelli, M.; Barzago, M.M.; Raska, I., Jr; Diomede, L.; Kurosaki, M.; Pisano, C.; Carminati, P.; Merlini, L.; Dallavalle, S.; Tavecchio, M.; Rochette-Egly, C.; Terao, M.; Garattini, E. Antitumor activity of the retinoid-related molecules (E)-3-(4′-hydroxy-3′-adamantylbiphenyl-4-yl)acrylic acid (ST1926) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) in F9 teratocarcinoma: Role of retinoic acid receptor γ and retinoid-independent pathways. Mol. Pharmacol., 2006, 70(3), 909-924.
[http://dx.doi.org/10.1124/mol.106.023614] [PMID: 16788091]
[16]
Das, B.C.; Thapa, P.; Karki, R.; Das, S.; Mahapatra, S.; Liu, T-C.; Torregroza, I.; Wallace, D.P.; Kambhampati, S.; Van Veldhuizen, P.; Verma, A.; Ray, S.K.; Evans, T. Retinoic acid signaling pathways in development and diseases. Bioorg. Med. Chem., 2014, 22(2), 673-683.
[http://dx.doi.org/10.1016/j.bmc.2013.11.025] [PMID: 24393720]
[17]
Mezquita, B.; Mezquita, C. Two opposing faces of retinoic acid: Induction of stemness or induction of differentiation depending on cell-type. Biomolecules, 2019, 9(10), 567.
[http://dx.doi.org/10.3390/biom9100567] [PMID: 31590252]
[18]
Tallman, M.S. Acute promyelocytic leukemia as a paradigm for targeted therapy. Semin. Hematol., 2004, 41(2)(Suppl. 4), 27-32.
[19]
Fontana, J.A.; Rishi, A.K. Classical and novel retinoids: Their targets in cancer therapy. Leukemia, 2002, 16(4), 463-472.
[http://dx.doi.org/10.1038/sj.leu.2402414] [PMID: 11960323]
[20]
Pan, X.Q.; Zheng, X.; Shi, G.; Wang, H.; Ratnam, M.; Lee, R.J. Strategy for the treatment of acute myelogenous leukemia based on folate receptor β-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood, 2002, 100(2), 594-602.
[http://dx.doi.org/10.1182/blood.V100.2.594] [PMID: 12091353]
[21]
Ferreira, R.; Napoli, J.; Enver, T.; Bernardino, L.; Ferreira, L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat. Commun., 2020, 11(1), 4265.
[http://dx.doi.org/10.1038/s41467-020-18042-2] [PMID: 32848154]
[22]
Li, Y.; Wongsiriroj, N.; Blaner, W.S. The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg. Nutr., 2014, 3(3), 126-139.
[PMID: 25019074]
[23]
Kelly, M.; von Lintig, J. STRA6: Role in cellular retinol uptake and efflux. Hepatobiliary Surg. Nutr., 2015, 4(4), 229-242.
[PMID: 26312242]
[24]
McKenna, N.J. EMBO Retinoids 2011: Mechanisms, biology and pathology of signaling by retinoic acid and retinoic acid receptors. Nucl. Recept. Signal., 2012, 10(1), 10003.
[25]
Brtko, J.; Dvorak, Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie, 2020, 179, 157-168.
[http://dx.doi.org/10.1016/j.biochi.2020.09.027] [PMID: 33011201]
[26]
Schenk, T.; Stengel, S.; Zelent, A. Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer, 2014, 111(11), 2039-2045.
[http://dx.doi.org/10.1038/bjc.2014.412] [PMID: 25412233]
[27]
Bastien, J.; Rochette-Egly, C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene, 2004, 328, 1-16.
[http://dx.doi.org/10.1016/j.gene.2003.12.005] [PMID: 15019979]
[28]
Núñez, V.; Alameda, D.; Rico, D.; Mota, R.; Gonzalo, P.; Cedenilla, M.; Fischer, T.; Boscá, L.; Glass, C.K.; Arroyo, A.G.; Ricote, M. Retinoid X receptor α controls innate inflammatory responses through the up-regulation of chemokine expression. Proc. Natl. Acad. Sci. USA, 2010, 107(23), 10626-10631.
[http://dx.doi.org/10.1073/pnas.0913545107] [PMID: 20498053]
[29]
Chlapek, P.; Slavikova, V.; Mazanek, P.; Sterba, J.; Veselska, R. Why differentiation therapy sometimes fails: Molecular mechanisms of resistance to retinoids. Int. J. Mol. Sci., 2018, 19(1), 132.
[http://dx.doi.org/10.3390/ijms19010132] [PMID: 29301374]
[30]
Cosio, T.; Di Prete, M.; Gaziano, R.; Lanna, C.; Orlandi, A.; Di Francesco, P.; Bianchi, L.; Campione, E. Trifarotene: A current review and perspectives in dermatology. Biomedicines, 2021, 9(3), 237.
[http://dx.doi.org/10.3390/biomedicines9030237] [PMID: 33652835]
[31]
Nguyen, T.H.; Koneru, B.; Wei, S-J.; Chen, W.H.; Makena, M.R.; Urias, E.; Kang, M.H.; Reynolds, C.P. Fenretinide via NOXA Induction, enhanced activity of the BCL-2 inhibitor venetoclax in high BCL-2-expressing neuroblastoma preclinical models. Mol. Cancer Ther., 2019, 18(12), 2270-2282.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0385] [PMID: 31484706]
[32]
Liu, L.; Liu, J.; Wang, H.; Zhao, H.; Du, Y. Fenretinide targeting of human colon cancer sphere cells through cell cycle regulation and stress-responsive activities. Oncol. Lett., 2018, 16(4), 5339-5348.
[http://dx.doi.org/10.3892/ol.2018.9296] [PMID: 30250604]
[33]
Zhang, L.; Huang, D.; Shao, D.; Liu, H.; Zhou, Q.; Gui, S.; Wei, W.; Wang, Y. Fenretinide inhibits the proliferation and migration of human liver cancer HepG2 cells by downregulating the activation of myosin light chain kinase through the p38 MAPK signaling pathway. Oncol. Rep., 2018, 40(1), 518-526.
[http://dx.doi.org/10.3892/or.2018.6436] [PMID: 29767236]
[34]
Wang, H.; Zhang, Y.; Du, Y. Ovarian and breast cancer spheres are similar in transcriptomic features and sensitive to fenretinide. BioMed Res. Int., 2013, 2013, 510905.
[http://dx.doi.org/10.1155/2013/510905]
[35]
Song, M.M.; Makena, M.R.; Hindle, A.; Koneru, B.; Nguyen, T.H.; Verlekar, D.U.; Cho, H.; Maurer, B.J.; Kang, M.H.; Reynolds, C.P. Cytotoxicity and molecular activity of fenretinide and metabolites in T-cell lymphoid malignancy, neuroblastoma, and ovarian cancer cell lines in physiological hypoxia. Anticancer Drugs, 2019, 30(2), 117-127.
[http://dx.doi.org/10.1097/CAD.0000000000000696] [PMID: 30272587]
[36]
Mittal, N.; Malpani, S.; Dyson, M.; Ono, M.; Coon, J.S.; Kim, J.J.; Schink, J.C.; Bulun, S.E.; Pavone, M.E. Fenretinide: A novel treatment for endometrial cancer. PLoS One, 2014, 9(10), e110410.
[http://dx.doi.org/10.1371/journal.pone.0110410] [PMID: 25340777]
[37]
Xiong, J.; Kuang, X.; Lu, T.; Liu, X.; Cheng, B.; Wang, W.; Wei, D.; Li, X.; Zhang, Z.; Fang, Q.; Wu, D.; Wang, J. Fenretinide-induced apoptosis of acute myeloid leukemia cells via NR4A1 translocation into mitochondria and Bcl-2 transformation. J. Cancer, 2019, 10(27), 6767-6778.
[http://dx.doi.org/10.7150/jca.32167] [PMID: 31839811]
[38]
Thomas, J.S.; El-Khoueiry, A.B.; Maurer, B.J.; Groshen, S.; Pinski, J.K.; Cobos, E.; Gandara, D.R.; Lenz, H.J.; Kang, M.H.; Reynolds, C.P.; Newman, E.M. A phase I study of intravenous fenretinide (4-HPR) for patients with malignant solid tumors. Cancer Chemother. Pharmacol., 2021, 87(4), 525-532.
[http://dx.doi.org/10.1007/s00280-020-04224-8] [PMID: 33423090]
[39]
Mohrbacher, A.M.; Yang, A.S.; Groshen, S.; Kummar, S.; Gutierrez, M.E.; Kang, M.H.; Tsao-Wei, D.; Reynolds, C.P.; Newman, E.M.; Maurer, B.J. Phase I study of fenretinide delivered intravenously in patients with relapsed or refractory hematologic malignancies: A California Cancer Consortium Trial. Clin. Cancer Res., 2017, 23(16), 4550-4555.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0234] [PMID: 28420721]
[40]
Cooper, J.P.; Reynolds, C.P.; Cho, H.; Kang, M.H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp. Biol. Med. (Maywood), 2017, 242(11), 1178-1184.
[http://dx.doi.org/10.1177/1535370217706952] [PMID: 28429653]
[41]
Villablanca, J.G.; London, W.B.; Naranjo, A.; McGrady, P.; Ames, M.M.; Reid, J.M.; McGovern, R.M.; Buhrow, S.A.; Jackson, H.; Stranzinger, E.; Kitchen, B.J.; Sondel, P.M.; Parisi, M.T.; Shulkin, B.; Yanik, G.A.; Cohn, S.L.; Reynolds, C.P. Phase II study of oral capsular 4-hydroxyphenylretinamide (4-HPR/fenretinide) in pediatric patients with refractory or recurrent neuroblastoma: A report from the Children’s Oncology Group. Clin. Cancer Res., 2011, 17(21), 6858-6866.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0995] [PMID: 21908574]
[42]
Wang, Y.; Ding, Y.; Wang, C.; Gao, M.; Xu, Y.; Ma, X.; Ma, X.; Cui, H.; Li, L. Fenretinide-polyethylene glycol (PEG) conjugate with improved solubility enhanced cytotoxicity to cancer cell and potent in vivo efficacy. Pharm. Dev. Technol., 2020, 25(8), 962-970.
[http://dx.doi.org/10.1080/10837450.2020.1765377] [PMID: 32366203]
[43]
Orienti, I.; Salvati, V.; Sette, G.; Zucchetti, M.; Bongiorno-Borbone, L.; Peschiaroli, A.; Zolla, L.; Francescangeli, F.; Ferrari, M.; Matteo, C.; Bello, E.; Di Virgilio, A.; Falchi, M.; De Angelis, M.L.; Baiocchi, M.; Melino, G.; De Maria, R.; Zeuner, A.; Eramo, A. A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 373.
[http://dx.doi.org/10.1186/s13046-019-1383-9] [PMID: 31439019]
[44]
Torchilin, V.P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci., 2004, 61(19-20), 2549-2559.
[http://dx.doi.org/10.1007/s00018-004-4153-5] [PMID: 15526161]
[45]
Kwon, G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(5), 357-403.
[46]
Okuda, T.; Kawakami, S.; Higuchi, Y.; Satoh, T.; Oka, Y.; Yokoyama, M.; Yamashita, F.; Hashida, M. Enhanced in vivo antitumor efficacy of fenretinide encapsulated in polymeric micelles. Int. J. Pharm., 2009, 373(1-2), 100-106.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.019] [PMID: 19429294]
[47]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[48]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[49]
Gao, H.; Liu, J.; Yang, C.; Cheng, T.; Chu, L.; Xu, H.; Meng, A.; Fan, S.; Shi, L.; Liu, J. The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles. Int. J. Nanomedicine, 2013, 8, 4229-4246.
[PMID: 24235825]
[50]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[51]
Formelli, F.; Cavadini, E.; Luksch, R.; Garaventa, A.; Villani, M.G.; Appierto, V.; Persiani, S. Pharmacokinetics of oral fenretinide in neuroblastoma patients: Indications for optimal dose and dosing schedule also with respect to the active metabolite 4-oxo-fenretinide. Cancer Chemother. Pharmacol., 2008, 62(4), 655-665.
[http://dx.doi.org/10.1007/s00280-007-0649-7] [PMID: 18066548]
[52]
Ma, X.; Williams, R.O., III Characterization of amorphous solid dispersions: An update. J. Drug Deliv. Sci. Technol., 2019, 50, 113-124.
[http://dx.doi.org/10.1016/j.jddst.2019.01.017]
[53]
Margarit, M.V.; Marín, M.T.; Contreras, M.D. Solubility of solid dispersions of pizotifen malate and povidone. Drug Dev. Ind. Pharm., 2001, 27(6), 517-522.
[http://dx.doi.org/10.1081/DDC-100105176] [PMID: 11548858]
[54]
Bhardwaj, S.P.; Arora, K.K.; Kwong, E.; Templeton, A.; Clas, S-D.; Suryanarayanan, R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: Role of molecular mobility. Mol. Pharm., 2014, 11(11), 4228-4237.
[http://dx.doi.org/10.1021/mp5004515] [PMID: 25325389]
[55]
Laurent, P.; Betancourt, A.; Lemieux, M.; Thibert, R. Solid oral formulations of fenretinide W.O. Patent 2016011535A1, 2016.
[56]
Zhang, Y.; Wischke, C.; Mittal, S.; Mitra, A.; Schwendeman, S.P. Design of controlled release PLGA microspheres for hydrophobic fenretinide. Mol. Pharm., 2016, 13(8), 2622-2630.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00961] [PMID: 27144450]
[57]
Nieto, K.; Mallery, S.R.; Schwendeman, S.P. Microencapsulation of amorphous solid dispersions of fenretinide enhances drug solubility and release from PLGA in vitro and in vivo. Int. J. Pharm., 2020, 586, 119475.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119475] [PMID: 32525080]
[58]
Salata, G.C.; Malagó, I.D.; Carvalho Dartora, V.F.M.; Marçal Pessoa, A.F.; Fantini, M.C.A.; Costa, S.K.P.; Machado-Neto, J.A.; Lopes, L.B. Microemulsion for prolonged release of fenretinide in the mammary tissue and prevention of breast cancer development. Mol. Pharm., 2021, 18(9), 3401-3417.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00319] [PMID: 34482696]
[59]
Maurer, B.J.; Kang, M.H.; Villablanca, J.G.; Janeba, J.; Groshen, S.; Matthay, K.K.; Sondel, P.M.; Maris, J.M.; Jackson, H.A.; Goodarzian, F.; Shimada, H.; Czarnecki, S.; Hasenauer, B.; Reynolds, C.P.; Marachelian, A. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: A report from the New Approaches to Neuroblastoma Therapy (NANT) consortium. Pediatr. Blood Cancer, 2013, 60(11), 1801-1808.
[http://dx.doi.org/10.1002/pbc.24643] [PMID: 23813912]
[60]
Maurer, B.J.; Glade Bender, J.L.; Kang, M.H.; Villablanca, J.; Wei, D.; Groshen, S.G.; Yang, S.; Czarnecki, S.; Granger, M.P.; Katzenstein, H.M. Fenretinide (4-HPR)/Lym-X-Sorb (LXS) oral powder plus ketoconazole in patients with high-risk (HR) recurrent or resistant neuroblastoma: A New Approach to Neuroblastoma Therapy (NANT) Consortium trial. J. Clin. Oncol., 2014, 32(Supple. 15), 10071.
[61]
Liu, X.; Maurer, B.; Frgala, T.; Page, J.; Noker, P.; Fulton, R.; Ames, M.; Reid, J.; Gupta, S.; Vishnuvajjala, R. Preclinical toxicology and pharmacokinetics of intravenous lipid emulsion fenretinide. Mol. Cancer Ther., 2007, 6(Suppl. 11), C159.
[62]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[63]
Vivat-Hannah, V.; You, D.; Rizzo, C.; Daris, J-P.; Lapointe, P.; Zusi, F.C.; Marinier, A.; Lorenzi, M.V.; Gottardis, M.M. Synergistic cytotoxicity exhibited by combination treatment of selective retinoid ligands with taxol (Paclitaxel). Cancer Res., 2001, 61(24), 8703-8711.
[PMID: 11751388]
[64]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[65]
Sun, Y.; Yu, B.; Wang, G.; Wu, Y.; Zhang, X.; Chen, Y.; Tang, S.; Yuan, Y.; Lee, R.J.; Teng, L.; Xu, S. Enhanced antitumor efficacy of vitamin E TPGS-emulsified PLGA nanoparticles for delivery of paclitaxel. Colloids Surf. B Biointerfaces, 2014, 123, 716-723.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.007] [PMID: 25456995]
[66]
Janardhanan, R.; Butler, J.T.; Banik, N.L.; Ray, S.K.N. -(4-Hydroxyphenyl) retinamide potentiated paclitaxel for cell cycle arrest and apoptosis in glioblastoma C6 and RG2 cells. Brain Res., 2009, 1268, 142-153.
[http://dx.doi.org/10.1016/j.brainres.2009.02.064] [PMID: 19285047]
[67]
Hu, M.; Zhang, J.; Ding, R.; Fu, Y.; Gong, T.; Zhang, Z. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system. Drug Dev. Ind. Pharm., 2017, 43(4), 687-697.
[http://dx.doi.org/10.1080/03639045.2016.1278015] [PMID: 28032534]
[68]
Jin, X.; Zhou, B.; Xue, L.; San, W. Soluplus(®) micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother., 2015, 69, 388-395.
[http://dx.doi.org/10.1016/j.biopha.2014.12.028] [PMID: 25661387]
[69]
Wang, Y.; Ding, Y.; Xu, Y.; Wang, C.; Ding, Y.; Gao, M.; Ma, C.; Ma, X.; Li, L. Mixed micelles of TPGS and Soluplus® for co-delivery of paclitaxel and fenretinide: In vitro and in vivo anticancer study. Pharm. Dev. Technol., 2020, 25(7), 865-873.
[http://dx.doi.org/10.1080/10837450.2020.1753770] [PMID: 32266855]
[70]
Orienti, I.; Francescangeli, F.; De Angelis, M.L.; Fecchi, K.; Bongiorno-Borbone, L.; Signore, M.; Peschiaroli, A.; Boe, A.; Bruselles, A.; Costantino, A.; Eramo, A.; Salvati, V.; Sette, G.; Contavalli, P.; Zolla, L.; Oki, T.; Kitamura, T.; Spada, M.; Giuliani, A.; Baiocchi, M.; La Torre, F.; Melino, G.; Tartaglia, M.; De Maria, R.; Zeuner, A. A new bioavailable fenretinide formulation with antiproliferative, antimetabolic, and cytotoxic effects on solid tumors. Cell Death Dis., 2019, 10(7), 529.
[http://dx.doi.org/10.1038/s41419-019-1775-y] [PMID: 31332161]
[71]
Kotla, V.; Goel, S.; Nischal, S.; Heuck, C.; Vivek, K.; Das, B.; Verma, A. Mechanism of action of lenalidomide in hematological malignancies. J. Hematol. Oncol., 2009, 2(1), 36.
[http://dx.doi.org/10.1186/1756-8722-2-36] [PMID: 19674465]
[72]
Lu, L.; Payvandi, F.; Wu, L.; Zhang, L-H.; Hariri, R.J.; Man, H-W.; Chen, R.S.; Muller, G.W.; Hughes, C.C.; Stirling, D.I.; Schafer, P.H.; Bartlett, J.B. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc. Res., 2009, 77(2), 78-86.
[http://dx.doi.org/10.1016/j.mvr.2008.08.003] [PMID: 18805433]
[73]
Moodad, S.; El Hajj, R.; Hleihel, R.; Hajjar, L.; Tawil, N.; Karam, M.; Hamie, M.; Abou Merhi, R.; El Sabban, M.; El Hajj, H. Lenalidomide in combination with arsenic trioxide: An effective therapy for primary effusion lymphoma. Cancers (Basel), 2020, 12(9), 2483.
[http://dx.doi.org/10.3390/cancers12092483] [PMID: 32883022]
[74]
Xu, Y.; Sun, J.; Sheard, M.A.; Tran, H.C.; Wan, Z.; Liu, W.Y.; Asgharzadeh, S.; Sposto, R.; Wu, H.W.; Seeger, R.C. Lenalidomide overcomes suppression of human natural killer cell anti-tumor functions by neuroblastoma microenvironment-associated IL-6 and TGFβ1. Cancer Immunol. Immunother., 2013, 62(10), 1637-1648.
[http://dx.doi.org/10.1007/s00262-013-1466-y] [PMID: 23982484]
[75]
Orienti, I.; Nguyen, F.; Guan, P.; Kolla, V.; Calonghi, N.; Farruggia, G.; Chorny, M.; Brodeur, G.M. A novel nanomicellar combination of fenretinide and lenalidomide shows marked antitumor activity in a neuroblastoma xenograft model. Drug Des. Devel. Ther., 2019, 13, 4305-4319.
[http://dx.doi.org/10.2147/DDDT.S221909] [PMID: 31908416]
[76]
Hermann, T.W.; Yen, W-C.; Tooker, P.; Fan, B.; Roegner, K.; Negro-Vilar, A.; Lamph, W.W.; Bissonnette, R.P. The retinoid X receptor agonist bexarotene (Targretin) synergistically enhances the growth inhibitory activity of cytotoxic drugs in non-small cell lung cancer cells. Lung Cancer, 2005, 50(1), 9-18.
[http://dx.doi.org/10.1016/j.lungcan.2005.05.008] [PMID: 15993980]
[77]
Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M.A.; Leid, M.; De Lera, A.R.; Lotan, R.; Mangelsdorf, D.J.; Gronemeyer, H. International union of pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev., 2006, 58(4), 760-772.
[http://dx.doi.org/10.1124/pr.58.4.7] [PMID: 17132853]
[78]
Qi, L.; Guo, Y.; Zhang, P.; Cao, X.; Luan, Y. Preventive and therapeutic effects of the retinoid X receptor agonist bexarotene on tumors. Curr. Drug Metab., 2016, 17(2), 118-128.
[http://dx.doi.org/10.2174/138920021702160114121706] [PMID: 26806040]
[79]
Duvic, M.; Hymes, K.; Heald, P.; Breneman, D.; Martin, A.G.; Myskowski, P.; Crowley, C.; Yocum, R.C. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: Multinational phase II-III trial results. J. Clin. Oncol., 2001, 19(9), 2456-2471.
[http://dx.doi.org/10.1200/JCO.2001.19.9.2456] [PMID: 11331325]
[80]
Kizaki, M.; Dawson, M.I.; Heyman, R.; Elster, E.; Morosetti, R.; Pakkala, S.; Chen, D-L.; Ueno, H.; Chao, W-R.; Morikawa, M. Effects of novel retinoid X receptor-selective ligands on myeloid leukemia differentiation and proliferation in vitro. Blood, 1996, 87(5), 1977-1984.
[81]
Li, Y.; Zhang, Y.; Hill, J.; Kim, H-T.; Shen, Q.; Bissonnette, R.P.; Lamph, W.W.; Brown, P.H. The rexinoid, bexarotene, prevents the development of premalignant lesions in MMTV-erbB2 mice. Br. J. Cancer, 2008, 98(8), 1380-1388.
[http://dx.doi.org/10.1038/sj.bjc.6604320] [PMID: 18362934]
[82]
Graeppi-Dulac, J.; Vlaeminck-Guillem, V.; Perier-Muzet, M.; Dalle, S.; Orgiazzi, J. Endocrine side-effects of anti-cancer drugs: The impact of retinoids on the thyroid axis. Eur. J. Endocrinol., 2014, 170(6), R253-R262.
[http://dx.doi.org/10.1530/EJE-13-0920] [PMID: 24616413]
[83]
Qi, L.; Guo, Y.; Luan, J.; Zhang, D.; Zhao, Z.; Luan, Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(47), 8361-8371.
[http://dx.doi.org/10.1039/C4TB01102C] [PMID: 32262006]
[84]
Vasile, A.; Ignat, M.; Zaltariov, M.F.; Sacarescu, L.; Stoleriu, I.; Draganescu, D.; Dumitras, M.; Ochiuz, L. Development of new bexarotene-loaded mesoporous silica systems for topical pharmaceutical formulations. Acta Chim. Slov., 2018, 65(1), 97-107.
[http://dx.doi.org/10.17344/acsi.2017.3641] [PMID: 29562115]
[85]
Junghanns, J-U.A.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[86]
Li, L.; Liu, Y.; Wang, J.; Chen, L.; Zhang, W.; Yan, X. Preparation, in vitro and in vivo evaluation of bexarotene nanocrystals with surface modification by folate-chitosan conjugates. Drug Deliv., 2016, 23(1), 79-87.
[http://dx.doi.org/10.3109/10717544.2014.904455] [PMID: 24786485]
[87]
Pardeike, J.; Strohmeier, D.M.; Schrödl, N.; Voura, C.; Gruber, M.; Khinast, J.G.; Zimmer, A. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm., 2011, 420(1), 93-100.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.033] [PMID: 21889582]
[88]
Jarvis, M.; Krishnan, V.; Mitragotri, S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med., 2018, 4(1), 5-16.
[http://dx.doi.org/10.1002/btm2.10122] [PMID: 30680314]
[89]
Chen, L.; Wang, Y.; Zhang, J.; Hao, L.; Guo, H.; Lou, H.; Zhang, D. Bexarotene nanocrystal-Oral and parenteral formulation development, characterization and pharmacokinetic evaluation. Eur. J. Pharm. Biopharm., 2014, 87(1), 160-169.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.005] [PMID: 24333772]
[90]
Wang, Y.; Rong, J.; Zhang, J.; Liu, Y.; Meng, X.; Guo, H.; Liu, H.; Chen, L. Morphology, in vivo distribution and antitumor activity of bexarotene nanocrystals in lung cancer. Drug Dev. Ind. Pharm., 2017, 43(1), 132-141.
[http://dx.doi.org/10.1080/03639045.2016.1225752] [PMID: 27588517]
[91]
Zhao, Y.; Chen, F.; Pan, Y.; Li, Z.; Xue, X.; Okeke, C.I.; Wang, Y.; Li, C.; Peng, L.; Wang, P.C.; Ma, X.; Liang, X.J. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl. Mater. Interfaces, 2015, 7(34), 19295-19305.
[http://dx.doi.org/10.1021/acsami.5b05347] [PMID: 26270258]
[92]
He, R.; Du, Y.; Ling, L.; Ismail, M.; Hou, Y.; Yao, C.; Li, X. Nanoformulation of dual bexarotene-tailed phospholipid conjugate with high drug loading. Eur. J. Pharm. Sci., 2017, 100, 197-204.
[http://dx.doi.org/10.1016/j.ejps.2017.01.012] [PMID: 28088372]
[93]
Zhang, Q.; Lee, S.B.; Chen, X.; Stevenson, M.E.; Pan, J.; Xiong, D.; Zhou, Y.; Miller, M.S.; Lubet, R.A.; Wang, Y.; Mirza, S.P.; You, M. Optimized bexarotene aerosol formulation inhibits major subtypes of lung cancer in mice. Nano Lett., 2019, 19(4), 2231-2242.
[http://dx.doi.org/10.1021/acs.nanolett.8b04309] [PMID: 30873838]
[94]
Cincinelli, R.; Dallavalle, S.; Merlini, L.; Penco, S.; Pisano, C.; Carminati, P.; Giannini, G.; Vesci, L.; Gaetano, C.; Illy, B.; Zuco, V.; Supino, R.; Zunino, F. A novel atypical retinoid endowed with proapoptotic and antitumor activity. J. Med. Chem., 2003, 46(6), 909-912.
[http://dx.doi.org/10.1021/jm025593y] [PMID: 12620066]
[95]
Garattini, E.; Parrella, E.; Diomede, L.; Gianni’, M.; Kalac, Y.; Merlini, L.; Simoni, D.; Zanier, R.; Ferrara, F.F.; Chiarucci, I.; Carminati, P.; Terao, M.; Pisano, C. ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: Modulation of intracellular calcium homeostasis. Blood, 2004, 103(1), 194-207.
[http://dx.doi.org/10.1182/blood-2003-05-1577] [PMID: 12958071]
[96]
Di Francesco, A.M.; Meco, D.; Torella, A.R.; Barone, G.; D’Incalci, M.; Pisano, C.; Carminati, P.; Riccardi, R. The novel atypical retinoid ST1926 is active in ATRA resistant neuroblastoma cells acting by a different mechanism. Biochem. Pharmacol., 2007, 73(5), 643-655.
[http://dx.doi.org/10.1016/j.bcp.2006.10.033] [PMID: 17150196]
[97]
Basma, H.; Ghayad, S.E.; Rammal, G.; Mancinelli, A.; Harajly, M.; Ghamloush, F.; Dweik, L.; El-Eit, R.; Zalzali, H.; Rabeh, W.; Pisano, C.; Darwiche, N.; Saab, R. The synthetic retinoid ST1926 as a novel therapeutic agent in rhabdomyosarcoma. Int. J. Cancer, 2016, 138(6), 1528-1537.
[http://dx.doi.org/10.1002/ijc.29886] [PMID: 26453552]
[98]
Zuco, V.; Benedetti, V.; De Cesare, M.; Zunino, F. Sensitization of ovarian carcinoma cells to the atypical retinoid ST1926 by the histone deacetylase inhibitor, RC307: Enhanced DNA damage response. Int. J. Cancer, 2010, 126(5), 1246-1255.
[PMID: 19676051]
[99]
El Hajj, H.; Khalil, B.; Ghandour, B.; Nasr, R.; Shahine, S.; Ghantous, A.; Abdel-Samad, R.; Sinjab, A.; Hasegawa, H.; Jabbour, M.; Hall, W.W.; Zaatari, G.; Dbaibo, G.; Pisano, C.; Bazarbachi, A.; Darwiche, N. Preclinical efficacy of the synthetic retinoid ST1926 for treating adult T-cell leukemia/lymphoma. Blood, 2014, 124(13), 2072-2080.
[http://dx.doi.org/10.1182/blood-2014-03-560060] [PMID: 25035162]
[100]
Nasr, R.R.; Hmadi, R.A.; El-Eit, R.M.; Iskandarani, A.N.; Jabbour, M.N.; Zaatari, G.S.; Mahon, F.X.; Pisano, C.C.; Darwiche, N.D. ST1926, an orally active synthetic retinoid, induces apoptosis in chronic myeloid leukemia cells and prolongs survival in a murine model. Int. J. Cancer, 2015, 137(3), 698-709.
[http://dx.doi.org/10.1002/ijc.29407] [PMID: 25557649]
[101]
Karam, L.; Houshaymi, B.; Abdel-Samad, R.; Jaafar, M.; Halloum, I.; Pisano, C.; Neipel, F.; Darwiche, N.; Abou Merhi, R. Antitumor activity of the synthetic retinoid ST1926 on primary effusion lymphoma in vitro and in vivo models. Oncol. Rep., 2018, 39(2), 721-730.
[PMID: 29207182]
[102]
Aouad, P.; Saikali, M.; Abdel-Samad, R.; Fostok, S.; El-Houjeiri, L.; Pisano, C.; Talhouk, R.; Darwiche, N. Antitumor activities of the synthetic retinoid ST1926 in two-dimensional and three-dimensional human breast cancer models. Anticancer Drugs, 2017, 28(7), 757-770.
[http://dx.doi.org/10.1097/CAD.0000000000000511] [PMID: 28471809]
[103]
Bahmad, H.F.; Samman, H.; Monzer, A.; Hadadeh, O.; Cheaito, K.; Abdel-Samad, R.; Hayar, B.; Pisano, C.; Msheik, H.; Liu, Y.N.; Darwiche, N.; Abou-Kheir, W. The synthetic retinoid ST1926 attenuates prostate cancer growth and potentially targets prostate cancer stem-like cells. Mol. Carcinog., 2019, 58(7), 1208-1220.
[http://dx.doi.org/10.1002/mc.23004] [PMID: 30883933]
[104]
Abdel-Samad, R.; Aouad, P.; Gali-Muhtasib, H.; Sweidan, Z.; Hmadi, R.; Kadara, H.; D’Andrea, E.L.; Fucci, A.; Pisano, C.; Darwiche, N. Mechanism of action of the atypical retinoid ST1926 in colorectal cancer: DNA damage and DNA polymerase α. Am. J. Cancer Res., 2018, 8(1), 39-55.
[PMID: 29416919]
[105]
Valli, C.; Paroni, G.; Di Francesco, A.M.; Riccardi, R.; Tavecchio, M.; Erba, E.; Boldetti, A.; Gianni’, M.; Fratelli, M.; Pisano, C.; Merlini, L.; Antoccia, A.; Cenciarelli, C.; Terao, M.; Garattini, E. Atypical retinoids ST1926 and CD437 are S-phase-specific agents causing DNA double-strand breaks: Significance for the cytotoxic and antiproliferative activity. Mol. Cancer Ther., 2008, 7(9), 2941-2954.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0419] [PMID: 18790775]
[106]
Sala, F.; Zucchetti, M.; Bagnati, R.; D’Incalci, M.; Pace, S.; Capocasa, F.; Marangon, E. Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of ST1926, a novel oral antitumor agent, adamantyl retinoid derivative, in plasma of patients in a Phase I study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(27), 3118-3126.
[http://dx.doi.org/10.1016/j.jchromb.2009.08.001] [PMID: 19695967]
[107]
El-Houjeiri, L.; Saad, W.; Hayar, B.; Aouad, P.; Tawil, N.; Abdel-Samad, R.; Hleihel, R.; Hamie, M.; Mancinelli, A.; Pisano, C.; El Hajj, H.; Darwiche, N. Antitumor effect of the atypical retinoid ST1926 in acute myeloid leukemia and nanoparticle formulation prolongs lifespan and reduces tumor burden of xenograft mice. Mol. Cancer Ther., 2017, 16(10), 2047-2057.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0785] [PMID: 28619754]
[108]
Tong, R.; Kohane, D.S. New strategies in cancer nanomedicine. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 41-57.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103456] [PMID: 26514197]
[109]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[110]
Barenholz, Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[111]
Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268.
[http://dx.doi.org/10.1093/annonc/mdl104] [PMID: 16740598]
[112]
Fda.gov. FDA approves Abraxane for late-stage pancreatic cancer injectable., Available from: http://www.fda.gov/NewsEvents/ (Accessed on: 1 May 2016).
[113]
Simon, A.M.; Jagadeeshan, S.; Abraham, E.; Akhilandeshwaran, A.; Pillai, J.J.; Kumar, N.A.; Sivakumari, A.N.; Kumar, G.S. Poly (D,L-lactic-co-glycolide) nanoparticles for the improved therapeutic efficacy of all-trans-retinoic acid: A study of Acute Myeloid Leukemia (AML) cell differentiation in vitro. Med. Chem., 2012, 8(5), 805-810.
[http://dx.doi.org/10.2174/157340612802084333] [PMID: 22741806]
[114]
Li, Y.; Qi, X.R.; Maitani, Y.; Nagai, T. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: In vitro and in vivo characterizations. Nanotechnology, 2009, 20(5), 055106.
[http://dx.doi.org/10.1088/0957-4484/20/5/055106] [PMID: 19417337]
[115]
Miwako, I.; Kagechika, H. Tamibarotene. Drugs Today (Barc), 2007, 43(8), 563-568.
[http://dx.doi.org/10.1358/dot.2007.43.8.1072615] [PMID: 17925887]
[116]
Martino, O.D.; Welch, J.S. Retinoic acid receptors in acute myeloid leukemia therapy. Cancers (Basel), 2019, 11(12), E1915.
[http://dx.doi.org/10.3390/cancers11121915] [PMID: 31805753]
[117]
Hashimoto, Y.; Kagechika, H.; Kawachi, E.; Fukasawa, H.; Saito, G.; Shudo, K. Evaluation of differentiation-inducing activity of retinoids on human leukemia cell lines HL-60 and NB4. Biol. Pharm. Bull., 1996, 19(10), 1322-1328.
[http://dx.doi.org/10.1248/bpb.19.1322] [PMID: 8913505]
[118]
Naina, H.V.; Levitt, D.; Vusirikala, M.; Anderson, L.D., Jr; Scaglioni, P.P.; Kirk, A.; Collins, R.H., Jr Successful treatment of relapsed and refractory extramedullary acute promyelocytic leukemia with tamibarotene. J. Clin. Oncol., 2011, 29(18), e534-e536.
[http://dx.doi.org/10.1200/JCO.2011.34.8953] [PMID: 21482998]
[119]
Takeshita, A.; Asou, N.; Atsuta, Y.; Sakura, T.; Ueda, Y.; Sawa, M.; Dobashi, N.; Taniguchi, Y.; Suzuki, R.; Nakagawa, M.; Tamaki, S.; Hagihara, M.; Fujimaki, K.; Furumaki, H.; Obata, Y.; Fujita, H.; Yanada, M.; Maeda, Y.; Usui, N.; Kobayashi, Y.; Kiyoi, H.; Ohtake, S.; Matsumura, I.; Naoe, T.; Miyazaki, Y. Tamibarotene maintenance improved relapse-free survival of acute promyelocytic leukemia: A final result of prospective, randomized, JALSG-APL204 study. Leukemia, 2019, 33(2), 358-370.
[http://dx.doi.org/10.1038/s41375-018-0233-7] [PMID: 30093681]
[120]
Tian, L.; Gao, J.; Yang, Z.; Zhang, Z.; Huang, G. Tamibarotene-loaded PLGA microspheres for intratumoral injection administration: Preparation and evaluation. AAPS PharmSciTech, 2018, 19(1), 275-283.
[http://dx.doi.org/10.1208/s12249-017-0827-9] [PMID: 28702817]
[121]
Kanai, F.; Obi, S.; Fujiyama, S.; Shiina, S.; Tamai, H.; Mochizuki, H.; Koike, Y.; Imamura, J.; Yamaguchi, T.; Saida, I.; Yokosuka, O.; Omata, M. An open-label phase I/II study of tamibarotene in patients with advanced hepatocellular carcinoma. Hepatol. Int., 2014, 8(1), 94-103.
[http://dx.doi.org/10.1007/s12072-013-9459-7] [PMID: 26202410]
[122]
Yang, Y.; Gao, J.; Ma, X.; Huang, G. Inclusion complex of tamibarotene with hydroxypropyl-β-cyclodextrin: Preparation, characterization, in-vitro and in-vivo evaluation. Asian J. Pharm. Sci., 2017, 12(2), 187-192.
[123]
Suarez, S.; O’Hara, P.; Kazantseva, M.; Newcomer, C.E.; Hopfer, R.; McMurray, D.N.; Hickey, A.J. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Screening in an infectious disease model. Pharm. Res., 2001, 18(9), 1315-1319.
[http://dx.doi.org/10.1023/A:1013094112861] [PMID: 11683246]
[124]
Doh, K-O.; Yeo, Y. Application of polysaccharides for surface modification of nanomedicines. Ther. Deliv., 2012, 3(12), 1447-1456.
[http://dx.doi.org/10.4155/tde.12.105] [PMID: 23323561]
[125]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med., 2021, 6(3), e10246.
[http://dx.doi.org/10.1002/btm2.10246] [PMID: 34514159]
[126]
Darwiche, N. Epigenetic mechanisms and the hallmarks of cancer: An intimate affair. Am. J. Cancer Res., 2020, 10(7), 1954-1978.
[PMID: 32774995]
[127]
Bensa, V.; Calarco, E.; Giusto, E.; Perri, P.; Corrias, M.V.; Ponzoni, M.; Brignole, C.; Pastorino, F. Retinoids delivery systems in cancer: Liposomal fenretinide for neuroectodermal-derived tumors. Pharmaceuticals (Basel), 2021, 14(9), 854.
[http://dx.doi.org/10.3390/ph14090854] [PMID: 34577553]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy