Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Human Orphan Cytochromes P450: An Update

Author(s): Dora Molina-Ortiz, Carmen Torres-Zárate and Rebeca Santes-Palacios*

Volume 23, Issue 12, 2022

Published on: 22 December, 2022

Page: [942 - 963] Pages: 22

DOI: 10.2174/1389200224666221209153032

Price: $65

Abstract

Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.

Keywords: Orphan cytochromes, biomarkers, drug metabolism, procarcinogens, deorphanization, CYP2A6 gene.

Graphical Abstract
[1]
Nebert, D.W.; Wikvall, K.; Miller, W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2013, 368(1612), 20120431.
[http://dx.doi.org/10.1098/rstb.2012.0431] [PMID: 23297354]
[2]
Guengerich, F.P.; Cheng, Q. Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol. Rev., 2011, 63(3), 684-699.
[http://dx.doi.org/10.1124/pr.110.003525] [PMID: 21737533]
[3]
Pan, S.T.; Xue, D.; Li, Z.L.; Zhou, Z.W.; He, Z.X.; Yang, Y.; Yang, T.; Qiu, J.X.; Zhou, S.F. Computational identification of the paralogs and orthologs of human cytochrome P450 superfamily and the implication in drug discovery. Int. J. Mol. Sci., 2016, 17(7), 1020.
[http://dx.doi.org/10.3390/ijms17071020] [PMID: 27367670]
[4]
Fukami, T.; Nakajima, M.; Yamanaka, H.; Fukushima, Y.; Mcleod, H.L.; Yokoi, T. A novel duplication type of CYP2A6 gene in African-American population. Drug Metab. Dispos., 2007, 35(4), 515-520.
[http://dx.doi.org/10.1124/dmd.106.013557] [PMID: 17267622]
[5]
Ding, S.; Lake, B.G.; Friedberg, T.; Wolf, C.R. Expression and alternative splicing of the cytochrome P-450 CYP2A7. Biochem. J., 1995, 306(1), 161-166.
[http://dx.doi.org/10.1042/bj3060161] [PMID: 7864805]
[6]
Nagai, F.; Hiyoshi, Y.; Sugimachi, K.; Tamura, H. Cytochrome P450 (CYP) expression in human myeloblastic and lymphoid cell lines. Biol. Pharm. Bull., 2002, 25(3), 383-385.
[http://dx.doi.org/10.1248/bpb.25.383] [PMID: 11913539]
[7]
Nakano, M.; Fukushima, Y.; Yokota, S.; Fukami, T.; Takamiya, M.; Aoki, Y.; Yokoi, T.; Nakajima, M. CYP2A7 pseudogene transcript affects CYP2A6 expression in human liver by acting as a decoy for miR-126. Drug Metab. Dispos., 2015, 43(5), 703-712.
[http://dx.doi.org/10.1124/dmd.115.063255] [PMID: 25710939]
[8]
Oscarson, M.; McLellan, R.A.; Asp, V.; Ledesma, M.; Ruiz, M.L.B.; Sinues, B.; Rautio, A.; Ingelman-Sundberg, M. Characterization of a novelCYP2A7/CYP2A6 hybrid allele (CYP2A6*12) that causes reduced CYP2A6 activity. Hum. Mutat., 2002, 20(4), 275-283.
[http://dx.doi.org/10.1002/humu.10126] [PMID: 12325023]
[9]
Wang, J.; Pitarque, M.; Ingelman-Sundberg, M. 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem. Biophys. Res. Commun., 2006, 340(2), 491-497.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.035] [PMID: 16378601]
[10]
Kerkel, K.; Spadola, A.; Yuan, E.; Kosek, J.; Jiang, L.; Hod, E.; Li, K.; Murty, V.V.; Schupf, N.; Vilain, E.; Morris, M.; Haghighi, F.; Tycko, B. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat. Genet., 2008, 40(7), 904-908.
[http://dx.doi.org/10.1038/ng.174] [PMID: 18568024]
[11]
Saito, K.; Moore, R.; Negishi, M. p38 Mitogen-activated protein kinase regulates nuclear receptor CAR that activates the CYP2B6 gene. Drug Metab. Dispos., 2013, 41(6), 1170-1173.
[http://dx.doi.org/10.1124/dmd.113.051623] [PMID: 23539296]
[12]
Nagata, T.; Takahashi, Y.; Ishii, Y.; Asai, S.; Sugahara, M.; Nishida, Y.; Murata, A.; Chin, M.; Schichino, H.; Koshinaga, T.; Fukuzawa, M.; Mugishima, H. Profiling of genes differentially expressed between fetal liver and postnatal liver using high-density oligonucleotide DNA array. Int. J. Mol. Med., 2003, 11(6), 713-721.
[http://dx.doi.org/10.3892/ijmm.11.6.713] [PMID: 12736711]
[13]
Gao, Y.; Miksys, S.; Palmour, R.M.; Tyndale, R.F. The influence of tobacco smoke/nicotine on CYP2A expression in human and african green monkey lungs. Mol. Pharmacol., 2020, 98(6), 658-668.
[http://dx.doi.org/10.1124/molpharm.120.000100] [PMID: 33055223]
[14]
Durairaj, P.; Fan, L.; Du, W.; Ahmad, S.; Mebrahtu, D.; Sharma, S.; Ashraf, R.A.; Liu, J.; Liu, Q.; Bureik, M. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett., 2019, 593(12), 1372-1380.
[http://dx.doi.org/10.1002/1873-3468.13441] [PMID: 31111477]
[15]
Murtha, T.D.; Brown, T.C.; Rubinstein, J.C.; Haglund, F.; Juhlin, C.C.; Larsson, C.; Korah, R.; Carling, T. Overexpression of cytochrome P450 2A6 in adrenocortical carcinoma. Surgery, 2017, 161(6), 1667-1674.
[http://dx.doi.org/10.1016/j.surg.2016.11.036] [PMID: 28073588]
[16]
Lodhi, S.S.; Farmer, R.; Jaiswal, Y.K.; Wadhwa, G. In silico structural, virtual screening and docking studies of human cytochrome P450 2A7 protein. Interdiscip. Sci., 2015, 7(2), 129-135.
[http://dx.doi.org/10.1007/s12539-015-0007-0] [PMID: 26239541]
[17]
Iizuka, N.; Oka, M.; Hamamoto, Y.; Mori, N.; Tamesa, T.; Tangoku, A.; Miyamoto, T.; Uchimura, S.; Nakayama, H.; Hamada, K.; Yamada-Okabe, H. Altered levels of cytochrome p450 genes in hepatitis B or C virus-infected liver identified by oligonucleotide microarray. Cancer Genomics Proteomics, 2004, 1(1), 53-58.
[PMID: 31394618]
[18]
Kim, S.C.; Hong, C.W.; Jang, S.G.; Kim, Y.A.; Yoo, B.C.; Shin, Y.K.; Jeong, S.Y.; Ku, J.L.; Park, J.G. Establishment and characterization of paired primary and peritoneal seeding human colorectal cancer cell lines: Identification of genes that mediate metastatic potential. Transl. Oncol., 2018, 11(5), 1232-1243.
[http://dx.doi.org/10.1016/j.tranon.2018.07.014] [PMID: 30114595]
[19]
Reid, B.M.; Permuth, J.B.; Chen, Y.A.; Fridley, B.L.; Iversen, E.S.; Chen, Z.; Jim, H.; Vierkant, R.A.; Cunningham, J.M.; Barnholtz-Sloan, J.S.; Narod, S.; Risch, H.; Schildkraut, J.M.; Goode, E.L.; Monteiro, A.N.; Sellers, T.A. Genome-wide analysis of common copy number variation and epithelial ovarian cancer risk. Cancer Epidemiol. Biomarkers Prev., 2019, 28(7), 1117-1126.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0833] [PMID: 30948450]
[20]
Walker, L.C.; Marquart, L.; Pearson, J.F.; Wiggins, G.A.R.; O’Mara, T.A.; Parsons, M.T.; Barrowdale, D.; McGuffog, L.; Dennis, J.; Benitez, J.; Slavin, T.P.; Radice, P.; Frost, D.; Godwin, A.K.; Meindl, A.; Schmutzler, R.K.; Isaacs, C.; Peshkin, B.N.; Caldes, T.; Hogervorst, F.B.L.; Lazaro, C.; Jakubowska, A.; Montagna, M.; Chen, X.; Offit, K.; Hulick, P.J.; Andrulis, I.L.; Lindblom, A.; Nussbaum, R.L.; Nathanson, K.L.; Chenevix-Trench, G.; Antoniou, A.C.; Couch, F.J.; Spurdle, A.B. Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers. Eur. J. Hum. Genet., 2017, 25(4), 432-438.
[http://dx.doi.org/10.1038/ejhg.2016.203] [PMID: 28145423]
[21]
Thean, L.F.; Wong, Y.H.; Lo, M.; Loi, C.; Chew, M.H.; Tang, C.L.; Cheah, P.Y. Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients. PLoS One, 2017, 12(3), e0173772.
[http://dx.doi.org/10.1371/journal.pone.0173772] [PMID: 28306719]
[22]
Chen, F.; Li, Y.; Qin, N.; Wang, F.; Du, J.; Wang, C.; Du, F.; Jiang, T.; Jiang, Y.; Dai, J.; Hu, Z.; Lu, C.; Shen, H. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer. J. Biomed. Res., 2020, 34(2), 129-138.
[http://dx.doi.org/10.7555/JBR.34.20190111] [PMID: 32305967]
[23]
Gao, P.; Liu, Z-Z.; Yan, L-N.; Dong, C-N.; Ma, N.; Yuan, M-N.; Zhou, J. Cytochrome P450 family members are associated with fast-growing hepatocellular carcinoma and patient survival: An integrated analysis of gene expression profiles. Saudi J. Gastroenterol., 2019, 25(3), 167-175.
[http://dx.doi.org/10.4103/sjg.SJG_290_18] [PMID: 30971588]
[24]
Brandfellner, H.M.; Ruparel, S.B.; Gelfond, J.A.; Hargreaves, K.M. Major blunt trauma evokes selective upregulation of oxidative enzymes in circulating leukocytes. Shock, 2013, 40(3), 182-187.
[http://dx.doi.org/10.1097/SHK.0b013e31829de02f] [PMID: 23817354]
[25]
Fukami, T.; Nakajima, M.; Sakai, H.; McLeod, H.L.; Yokoi, T. CYP2A7 polymorphic alleles confound the genotyping of CYP2A6*4A allele. Pharmacogenomics J., 2006, 6(6), 401-412.
[http://dx.doi.org/10.1038/sj.tpj.6500390] [PMID: 16636685]
[26]
John, S.E.; Antony, D.; Eaaswarkhanth, M.; Hebbar, P.; Alkayal, F.; Tuomilehto, J.; Alsmadi, O.; Thanaraj, T.A. Genetic variants associated with warfarin dosage in Kuwaiti population. Pharmacogenomics, 2017, 18(8), 757-764.
[http://dx.doi.org/10.2217/pgs-2017-0020] [PMID: 28592190]
[27]
Cao, M.; Yin, D.; Qin, Y.; Liao, F.; Su, Y.; Xia, X.; Gao, J.; Zhu, Y.; Zhang, W.; Shu, Y.; Lu, X. Screening of novel pharmacogenetic candidates for mercaptopurine-induced toxicity in patients with acute lymphoblastic leukemia. Front. Pharmacol., 2020, 11, 267.
[http://dx.doi.org/10.3389/fphar.2020.00267] [PMID: 32265697]
[28]
Guo, H.; Zeng, B.; Wang, L.; Ge, C.; Zuo, X.; Li, Y.; Ding, W.; Deng, L.; Zhang, J.; Qian, X.; Song, X.; Zhang, P. Knockdown CYP2S1 inhibits lung cancer cells proliferation and migration. Cancer Biomark., 2021, 32(4), 531-539.
[http://dx.doi.org/10.3233/CBM-210189] [PMID: 34275895]
[29]
Fekry, M.I.; Xiao, Y.; Berg, J.Z.; Guengerich, F.P. A role for the orphan human cytochrome P450 2S1 in polyunsaturated fatty acid omega-1 hydroxylation using an untargeted metabolomic approach. Drug Metab. Dispos., 2019, 47(11), 1325-1332.
[http://dx.doi.org/10.1124/dmd.119.089086] [PMID: 31511258]
[30]
Rivera, S.P.; Wang, F.; Saarikoski, S.T.; Taylor, R.T.; Chapman, B.; Zhang, R.; Hankinson, O. A novel promoter element containing multiple overlapping xenobiotic and hypoxia response elements mediates induction of cytochrome P4502S1 by both dioxin and hypoxia. J. Biol. Chem., 2007, 282(15), 10881-10893.
[http://dx.doi.org/10.1074/jbc.M609617200] [PMID: 17277313]
[31]
Cabrera-Cano, A.; Dávila-Borja, V.M.; Juárez-Méndez, S.; Marcial-Quino, J.; Gómez-Manzo, S.; Castillo-Rodríguez, R.A. Hypoxia as a modulator of cytochromes P450: Overexpression of the cytochromes CYP2S1 and CYP24A1 in human liver cancer cells in hypoxia. Cell Biochem. Funct., 2021, 39(4), 478-487.
[http://dx.doi.org/10.1002/cbf.3612] [PMID: 33377261]
[32]
Sheng, Y.; Wen, L.; Zheng, X.; Li, M.; Wang, D.; Chen, S.; Li, R.; Tang, L.; Zhou, F. CYP2S1 might regulate proliferation and immune response of keratinocyte in psoriasis. Epigenetics, 2021, 16(6), 618-628.
[http://dx.doi.org/10.1080/15592294.2020.1814486] [PMID: 32924783]
[33]
Szaefer, H.; Licznerska, B.; Cykowiak, M.; Baer-Dubowska, W. Expression of CYP2S1 and CYP2W1 in breast cancer epithelial cells and modulation of their expression by synthetic methoxy stilbenes. Pharmacol. Rep., 2019, 71(6), 1001-1005.
[http://dx.doi.org/10.1016/j.pharep.2019.08.005] [PMID: 31561186]
[34]
Madanayake, T.W.; Fidler, T.P.; Fresquez, T.M.; Bajaj, N.; Rowland, A.M. Cytochrome P450 2S1 depletion enhances cell proliferation and migration in bronchial epithelial cells, in part, through modulation of prostaglandin E(2) synthesis. Drug Metab. Dispos., 2012, 40(11), 2119-2125.
[http://dx.doi.org/10.1124/dmd.112.046466] [PMID: 22863683]
[35]
Wei, Y.; Li, L.; Zhou, X.; Zhang, Q.Y.; Dunbar, A.; Liu, F.; Kluetzman, K.; Yang, W.; Ding, X. Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab. Dispos., 2013, 41(1), 132-140.
[http://dx.doi.org/10.1124/dmd.112.048736] [PMID: 23073733]
[36]
Kang, X.; Shi, H.; Zhang, L.; Wang, Y.; Zhang, T.; Han, M.; Chen, C.; Wang, H. Genetic polymorphisms of CYP2S1, CYP2J2 and CYP2R1 genes in three Chinese populations: Han, Tibetan and Uighur. Pharmacogenomics, 2018, 19(12), 961-977.
[http://dx.doi.org/10.2217/pgs-2018-0063] [PMID: 30019995]
[37]
Beneke, A.; Guentsch, A.; Hillemann, A.; Zieseniss, A.; Swain, L.; Katschinski, D.M. Loss of PHD3 in myeloid cells dampens the inflammatory response and fibrosis after hind-limb ischemia. Cell Death Dis., 2017, 8(8), e2976.
[http://dx.doi.org/10.1038/cddis.2017.375] [PMID: 28796258]
[38]
Bui, P.H.; Hsu, E.L.; Hankinson, O. Fatty acid hydroperoxides support cytochrome P450 2S1-mediated bioactivation of benzo[a]pyrene-7,8-dihydrodiol. Mol. Pharmacol., 2009, 76(5), 1044-1052.
[http://dx.doi.org/10.1124/mol.109.057760] [PMID: 19713357]
[39]
Nishida, C.R.; Lee, M.; de Montellano, P.R.O. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol. Pharmacol., 2010, 78(3), 497-502.
[http://dx.doi.org/10.1124/mol.110.065045] [PMID: 20566689]
[40]
Mrízová, I.; Moserová, M.; Milichovský, J.; Šulc, M.; Kizek, R. Kubáčková, K.; Arlt, V.M.; Stiborová, M. Heterologous expression of human cytochrome P450 2S1 in Escherichia coli and investigation of its role in metabolism of benzo[a]pyrene and ellipticine. Monatsh. Chem., 2016, 147(5), 881-888.
[http://dx.doi.org/10.1007/s00706-016-1738-2] [PMID: 27110039]
[41]
Smith, G.; Wolf, C.R.; Deeni, Y.Y.; Dawe, R.S.; Evans, A.T.; Comrie, M.M.; Ferguson, J.; Ibbotson, S.H. Cutaneous expression of cytochrome P450 CYP2S1: individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet, 2003, 361(9366), 1336-1343.
[http://dx.doi.org/10.1016/S0140-6736(03)13081-4] [PMID: 12711469]
[42]
Zhou, F.; Wang, W.; Shen, C.; Li, H.; Zuo, X.; Zheng, X.; Yue, M.; Zhang, C.; Yu, L.; Chen, M.; Zhu, C.; Yin, X.; Tang, M.; Li, Y.; Chen, G.; Wang, Z.; Liu, S.; Zhou, Y.; Zhang, F.; Zhang, W.; Li, C.; Yang, S.; Sun, L.; Zhang, X. Epigenome-wide association analysis identified nine skin dna methylation loci for psoriasis. J. Invest. Dermatol., 2016, 136(4), 779-787.
[http://dx.doi.org/10.1016/j.jid.2015.12.029] [PMID: 26743604]
[43]
Downie, D.; McFadyen, M.C.E.; Rooney, P.H.; Cruickshank, M.E.; Parkin, D.E.; Miller, I.D.; Telfer, C.; Melvin, W.T.; Murray, G.I. Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin. Cancer Res., 2005, 11(20), 7369-7375.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0466] [PMID: 16243809]
[44]
Kumarakulasingham, M.; Rooney, P.H.; Dundas, S.R.; Telfer, C.; Melvin, W.T.; Curran, S.; Murray, G.I. Cytochrome p450 profile of colorectal cancer: Identification of markers of prognosis. Clin. Cancer Res., 2005, 11(10), 3758-3765.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1848] [PMID: 15897573]
[45]
Tan, B.S.; Tiong, K.H.; Muruhadas, A.; Randhawa, N.; Choo, H.L.; Bradshaw, T.D.; Stevens, M.F.G.; Leong, C.O. CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol. Cancer Ther., 2011, 10(10), 1982-1992.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0391] [PMID: 21831963]
[46]
Yang, C.; Zhou, Q.; Li, M.; Tong, X.; Sun, J.; Qing, Y.; Sun, L.; Yang, X.; Hu, X.; Jiang, J.; Yan, X.; He, L.; Wan, C. Upregulation of CYP2S1 by oxaliplatin is associated with p53 status in colorectal cancer cell lines. Sci. Rep., 2016, 6(1), 33078.
[http://dx.doi.org/10.1038/srep33078] [PMID: 27609465]
[47]
Dhers, L.; Ducassou, L.; Boucher, J.L.; Mansuy, D. Cytochrome P450 2U1, a very peculiar member of the human P450s family. Cell. Mol. Life Sci., 2017, 74(10), 1859-1869.
[http://dx.doi.org/10.1007/s00018-016-2443-3] [PMID: 28083596]
[48]
Karlgren, M.; Backlund, M.; Johansson, I.; Oscarson, M.; Ingelman-Sundberg, M. Characterization and tissue distribution of a novel human cytochrome P450—CYP2U1. Biochem. Biophys. Res. Commun., 2004, 315(3), 679-685.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.110] [PMID: 14975754]
[49]
Chuang, S.S.; Helvig, C.; Taimi, M.; Ramshaw, H.A.; Collop, A.H.; Amad, M.; White, J.A.; Petkovich, M.; Jones, G.; Korczak, B. CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes ω- and (ω-1)-hydroxylation of fatty acids. J. Biol. Chem., 2004, 279(8), 6305-6314.
[http://dx.doi.org/10.1074/jbc.M311830200] [PMID: 14660610]
[50]
Jarrar, Y.B.; Cho, S.A.; Oh, K.S.; Kim, D.H.; Shin, J.G.; Lee, S.J. Identification of cytochrome P450s involved in the metabolism of arachidonic acid in human platelets. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 89(4), 227-234.
[http://dx.doi.org/10.1016/j.plefa.2013.06.008] [PMID: 23932368]
[51]
Wu, K.C.; Cui, J.Y.; Klaassen, C.D. Effect of graded Nrf2 activation on phase-I and -II drug metabolizing enzymes and transporters in mouse liver. PLoS One, 2012, 7(7), e39006.
[http://dx.doi.org/10.1371/journal.pone.0039006] [PMID: 22808024]
[52]
Moriya, N.; Kataoka, H.; Nishikawa, J.; Kugawa, F. Identification of candidate target Cyp genes for microRNAs whose expression is altered by PCN and TCPOBOP, representative ligands of PXR and CAR. Biol. Pharm. Bull., 2016, 39(8), 1381-1386.
[http://dx.doi.org/10.1248/bpb.b16-00279] [PMID: 27237601]
[53]
Toselli, F.; de Waziers, I.; Dutheil, M.; Vincent, M.; Wilce, P.A.; Dodd, P.R.; Beaune, P.; Loriot, M.A.; Gillam, E.M.J. Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR. Xenobiotica, 2015, 45(12), 1129-1137.
[http://dx.doi.org/10.3109/00498254.2015.1040102] [PMID: 26095139]
[54]
Toselli, F.; Booth Depaz, I.M.; Worrall, S.; Etheridge, N.; Dodd, P.R.; Wilce, P.A.; Gillam, E.M.J. Expression of CYP2E1 and CYP2U1 proteins in amygdala and prefrontal cortex: influence of alcoholism and smoking. Alcohol. Clin. Exp. Res., 2015, 39(5), 790-797.
[http://dx.doi.org/10.1111/acer.12697] [PMID: 25872594]
[55]
Shimada, T.; Murayama, N.; Tanaka, K.; Takenaka, S.; Guengerich, F.P.; Yamazaki, H.; Komori, M. Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds. Chem. Res. Toxicol., 2011, 24(8), 1327-1337.
[http://dx.doi.org/10.1021/tx200218u] [PMID: 21732699]
[56]
Choudhary, D.; Jansson, I.; Stoilov, I.; Sarfarazi, M.; Schenkman, J.B. Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch. Biochem. Biophys., 2005, 436(1), 50-61.
[http://dx.doi.org/10.1016/j.abb.2005.02.001] [PMID: 15752708]
[57]
Jarrar, Y.B.; Lee, S.J. Molecular functionality of cytochrome P450 4 (CYP4) genetic polymorphisms and their clinical implications. Int. J. Mol. Sci., 2019, 20(17), 4274.
[http://dx.doi.org/10.3390/ijms20174274] [PMID: 31480463]
[58]
Luo, B.; Chen, C.; Wu, X.; Yan, D.; Chen, F.; Yu, X.; Yuan, J. Cytochrome P450 2U1 is a novel independent prognostic biomarker in breast cancer atients. Front. Oncol., 2020, 10, 1379.
[http://dx.doi.org/10.3389/fonc.2020.01379] [PMID: 32850442]
[59]
Bibi, F.; Efthymiou, S.; Bourinaris, T.; Tariq, A.; Zafar, F.; Rana, N.; Salpietro, V.; Houlden, H.; Raja, G.K.; Saeed, S.; Minhas, N.M. Rare novel CYP2U1 and ZFYVE26 variants identified in two Pakistani families with spastic paraplegia. J. Neurol. Sci., 2020, 411, 116669.
[http://dx.doi.org/10.1016/j.jns.2020.116669] [PMID: 32006740]
[60]
Durand, C.M.; Dhers, L.; Tesson, C.; Tessa, A.; Fouillen, L.; Jacqueré, S.; Raymond, L.; Coupry, I.; Benard, G.; Darios, F. El- Hachimi, K.H.; Astrea, G.; Rivier, F.; Banneau, G.; Pujol, C.; Lacombe, D.; Durr, A.; Babin, P.J.; Santorelli, F.M.; Pietrancosta, N.; Boucher, J.L.; Mansuy, D.; Stevanin, G.; Goizet, C. CYP2U1 activity is altered by missense mutations in hereditary spastic paraplegia 56. Hum. Mutat., 2018, 39(1), 140-151.
[http://dx.doi.org/10.1002/humu.23359] [PMID: 29034544]
[61]
Karlgren, M.; Miura, S.; Ingelmansundberg, M. Novel extrahepatic cytochrome P450s. Toxicol. Appl. Pharmacol., 2005, 207(2)(Suppl.), 57-61.
[http://dx.doi.org/10.1016/j.taap.2004.12.022] [PMID: 15987645]
[62]
Edler, D.; Stenstedt, K.; Öhrling, K.; Hallström, M.; Karlgren, M.; Ingelman-Sundberg, M.; Ragnhammar, P. The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer-A pilot study. Eur. J. Cancer, 2009, 45(4), 705-712.
[http://dx.doi.org/10.1016/j.ejca.2008.11.031] [PMID: 19118998]
[63]
Karlgren, M.; Gomez, A.; Stark, K.; Svärd, J.; Rodriguez-Antona, C.; Oliw, E.; Bernal, M.L.; y Cajal, S.R.; Johansson, I.; Ingelman-Sundberg, M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun., 2006, 341(2), 451-458.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.200] [PMID: 16426568]
[64]
Choong, E.; Guo, J.; Persson, A.; Virding, S.; Johansson, I.; Mkrtchian, S.; Ingelman-Sundberg, M. Developmental regulation and induction of cytochrome P450 2W1, an enzyme expressed in colon tumors. PLoS One, 2015, 10(4), e0122820.
[http://dx.doi.org/10.1371/journal.pone.0122820] [PMID: 25844926]
[65]
Gomez, A.; Karlgren, M.; Edler, D.; Bernal, M.L.; Mkrtchian, S.; Ingelman-Sundberg, M. Expression of CYP2W1 in colon tumors: Regulation by gene methylation. Pharmacogenomics, 2007, 8(10), 1315-1325.
[http://dx.doi.org/10.2217/14622416.8.10.1315] [PMID: 17979506]
[66]
Gao, F.; Zhang, J.; Jiang, P.; Gong, D.; Wang, J.W.; Xia, Y.; Østergaard, M.V.; Wang, J.; Sangild, P.T. Marked methylation changes in intestinal genes during the perinatal period of preterm neonates. BMC Genomics, 2014, 15(1), 716.
[http://dx.doi.org/10.1186/1471-2164-15-716] [PMID: 25163507]
[67]
Wang, Y.; Liu, Y.; Tang, T.; Luo, Y.; Stevens, M.F.G.; Cheng, X.; Yang, Y.; Shi, D.; Zhang, J.; Bradshaw, T.D. The antitumour activity of 2‐(4‐amino‐3‐methylphenyl)‐5‐fluorobenzothiazole in human gastric cancer models is mediated by AhR signalling. J. Cell. Mol. Med., 2020, 24(2), 1750-1759.
[http://dx.doi.org/10.1111/jcmm.14869] [PMID: 31876059]
[68]
Qi, G.Z.; Wang, X.; Miao, X.J.; Yin, S.J.; Ren, H.; Lou, Y.Q.; Zhang, G.L. Novel single nucleotide polymorphisms (SNPs) of CYP2W1 gene in Chinese Uygur and Han populations. Drug Metab. Pharmacokinet., 2015, 30(6), 449-452.
[http://dx.doi.org/10.1016/j.dmpk.2015.11.003] [PMID: 26683388]
[69]
Qi, G.; Li, D.; Zhang, X. Genetic variation of cytochrome P450 in Uyghur Chinese population. Drug Metab. Pharmacokinet., 2018, 33(1), 55-60.
[http://dx.doi.org/10.1016/j.dmpk.2017.02.002] [PMID: 29233455]
[70]
Hanzawa, Y.; Sasaki, T.; Mizugaki, M.; Ishikawa, M.; Hiratsuka, M. Genetic polymorphisms and haplotype structures of the human CYP2W1 gene in a Japanese population. Drug Metab. Dispos., 2008, 36(2), 349-352.
[http://dx.doi.org/10.1124/dmd.107.019141] [PMID: 17998294]
[71]
Gomez, A.; Nekvindova, J.; Travica, S.; Lee, M.Y.; Johansson, I.; Edler, D.; Mkrtchian, S.; Ingelman-Sundberg, M. Colorectal cancer-specific cytochrome P450 2W1: intracellular localization, glycosylation, and catalytic activity. Mol. Pharmacol., 2010, 78(6), 1004-1011.
[http://dx.doi.org/10.1124/mol.110.067652] [PMID: 20805301]
[72]
Xiao, Y.; Guengerich, F.P. Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids. J. Lipid Res., 2012, 53(8), 1610-1617.
[http://dx.doi.org/10.1194/jlr.M027185] [PMID: 22591743]
[73]
Zhao, Y.; Wan, D.; Yang, J.; Hammock, B.D.; Ortiz de Montellano, P.R. Catalytic activities of tumor-specific human cytochrome P450 CYP2W1 toward endogenous substrates. Drug Metab. Dispos., 2016, 44(5), 771-780.
[http://dx.doi.org/10.1124/dmd.116.069633] [PMID: 26936974]
[74]
Wang, K.; Guengerich, F.P. Bioactivation of fluorinated 2-aryl-benzothiazole antitumor molecules by human cytochrome P450s 1A1 and 2W1 and deactivation by cytochrome P450 2S1. Chem. Res. Toxicol., 2012, 25(8), 1740-1751.
[http://dx.doi.org/10.1021/tx3001994] [PMID: 22734839]
[75]
Bart, A.G.; Morais, G.; Vangala, V.R.; Loadman, P.M.; Pors, K.; Scott, E.E. Cytochrome P450 binding and bioactivation of tumor-targeted duocarmycin agents. Drug Metab. Dispos., 2022, 50(1), 49-57.
[http://dx.doi.org/10.1124/dmd.121.000642] [PMID: 34607808]
[76]
Li, W.; Tang, Y.; Hoshino, T.; Neya, S. Molecular modeling of human cytochrome P450 2W1 and its interactions with substrates. J. Mol. Graph. Model., 2009, 28(2), 170-176.
[http://dx.doi.org/10.1016/j.jmgm.2009.06.002] [PMID: 19596602]
[77]
Eun, C.Y.; Han, S.H.; Lim, Y.R.; Park, H.G.; Han, J.S.; Cho, K.S.; Chun, Y.J.; Kim, D.H. Bioactivation of aromatic amines by human CYP2W1, an orphan cytochrome P450 enzyme. Toxicol. Res., 2010, 26(3), 171-175.
[http://dx.doi.org/10.5487/TR.2010.26.3.171] [PMID: 24278521]
[78]
Gervasini, G.; Gonzalez de Murillo, S.; Ladero, J.M.; Agúndez, J.A. CYP2W1 variant alleles in Caucasians and polymorphism with increased colorectal cancer risk. Pharmacogenomics, 2010, 11(7), 919-925.
[http://dx.doi.org/10.2217/pgs.10.66] [PMID: 20602611]
[79]
Cárdenas-Rodríguez, N.; Lara-Padilla, E.; Bandala, C.; López-Cruz, J.; Uscanga-Carmona, C.; Lucio-Monter, P.F.; Floriano-Sánchez, E. CYP2W1, CYP4F11 and CYP8A1 polymorphisms and interaction of CYP2W1 genotypes with risk factors in Mexican women with breast cancer. Asian Pac. J. Cancer Prev., 2012, 13(3), 837-846.
[http://dx.doi.org/10.7314/APJCP.2012.13.3.837] [PMID: 22631658]
[80]
Leclerc, J.; Courcot-Ngoubo Ngangue, E.; Cauffiez, C.; Allorge, D.; Pottier, N.; Lafitte, J.J.; Debaert, M.; Jaillard, S.; Broly, F.; Lo-Guidice, J.M. Xenobiotic metabolism and disposition in human lung: Transcript profiling in non-tumoral and tumoral tissues. Biochimie, 2011, 93(6), 1012-1027.
[http://dx.doi.org/10.1016/j.biochi.2011.02.012] [PMID: 21376776]
[81]
Bandala, C.; Floriano-Sánchez, E.; Cárdenas-Rodríguez, N.; López-Cruz, J.; Lara-Padilla, E. RNA expression of cytochrome P450 in Mexican women with breast cancer. Asian Pac. J. Cancer Prev., 2012, 13(6), 2647-2653.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2647] [PMID: 22938436]
[82]
Molina-Ortiz, D.; Camacho-Carranza, R.; González-Zamora, J.F.; Shalkow-Kalincovstein, J.; Cárdenas-Cardós, R.; Ností-Palacios, R.; Vences-Mejía, A. Differential expression of cytochrome P450 enzymes in normal and tumor tissues from childhood rhabdomyosarcoma. PLoS One, 2014, 9(4), e93261.
[http://dx.doi.org/10.1371/journal.pone.0093261] [PMID: 24699256]
[83]
Zhang, K.; Jiang, L.; He, R.; Li, B.L.; Jia, Z.; Huang, R.H.; Mu, Y. Prognostic value of CYP2W1 expression in patients with human hepatocellular carcinoma. Tumour Biol., 2014, 35(8), 7669-7673.
[http://dx.doi.org/10.1007/s13277-014-2023-9] [PMID: 24801906]
[84]
Ronchi, C.L.; Sbiera, S.; Volante, M.; Steinhauer, S.; Scott-Wild, V.; Altieri, B.; Kroiss, M.; Bala, M.; Papotti, M.; Deutschbein, T.; Terzolo, M.; Fassnacht, M.; Allolio, B. CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma. PLoS One, 2014, 9(8), e105855.
[http://dx.doi.org/10.1371/journal.pone.0105855] [PMID: 25144458]
[85]
Altieri, B.; Sbiera, S.; Herterich, S.; De Francia, S.; Della Casa, S.; Calabrese, A.; Pontecorvi, A.; Quinkler, M.; Kienitz, T.; Mannelli, M.; Canu, L.; Angelousi, A.; Chortis, V.; Kroiss, M.; Terzolo, M.; Fassnacht, M.; Ronchi, C.L. Effects of germline CYP2W1*6 and CYP2B6*6 single nucleotide polymorphisms on mitotane treatment in adrenocortical carcinoma: A multicenter ENSAT study. Cancers (Basel), 2020, 12(2), 359.
[http://dx.doi.org/10.3390/cancers12020359] [PMID: 32033200]
[86]
Guo, J.; Johansson, I.; Mkrtchian, S.; Ingelman-Sundberg, M. The CYP2W1 enzyme: regulation, properties and activation of prodrugs. Drug Metab. Rev., 2016, 48(3), 369-378.
[http://dx.doi.org/10.1080/03602532.2016.1188939] [PMID: 27257736]
[87]
Hodek, P.; Hrdinova, J.; Macova, I.; Soucek, P.; Mrizova, I.; Burdova, K.; Kizek, R.; Hudecek, J.; Stiborova, M. Preparation and application of anti-peptide antibodies for detection of orphan cytochromes P450. Neuroendocrinol. Lett., 2015, 36(Suppl. 1), 38-45.
[PMID: 26757124]
[88]
Stone, A.; Ratnasinghe, L.D.; Emerson, G.L.; Modali, R.; Lehman, T.; Runnells, G.; Carroll, A.; Carter, W.; Barnhart, S.; Rasheed, A.A.; Greene, G.; Johnson, D.E.; Ambrosone, C.B.; Kadlubar, F.F.; Lang, N.P. CYP3A43 Pro(340)Ala polymorphism and prostate cancer risk in African Americans and Caucasians. Cancer Epidemiol. Biomarkers Prev., 2005, 14(5), 1257-1261.
[http://dx.doi.org/10.1158/1055-9965.EPI-04-0534] [PMID: 15894682]
[89]
Westlind, A.; Malmebo, S.; Johansson, I.; Otter, C.; Andersson, T.B.; Ingelman-Sundberg, M.; Oscarson, M. Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun., 2001, 281(5), 1349-1355.
[http://dx.doi.org/10.1006/bbrc.2001.4505] [PMID: 11243885]
[90]
Agarwal, V.; Kommaddi, R.P.; Valli, K.; Ryder, D.; Hyde, T.M.; Kleinman, J.E.; Strobel, H.W.; Ravindranath, V. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS One, 2008, 3(6), e2337.
[http://dx.doi.org/10.1371/journal.pone.0002337] [PMID: 18545703]
[91]
Gellner, K.; Eiselt, R.; Hustert, E.; Arnold, H.; Koch, I.; Haberl, M.; Deglmann, C.J.; Burk, O.; Buntefuss, D.; Escher, S.; Bishop, C.; Koebe, H.G.; Brinkmann, U.; Klenk, H.P.; Kleine, K.; Meyer, U.A.; Wojnowski, L. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics, 2001, 11(2), 111-121.
[http://dx.doi.org/10.1097/00008571-200103000-00002] [PMID: 11266076]
[92]
Fujino, C.; Sanoh, S.; Katsura, T. Variation in expression of cytochrome P450 3A isoforms and toxicological effects: Endo- and exogenous substances as regulatory factors and substrates. Biol. Pharm. Bull., 2021, 44(11), 1617-1634.
[http://dx.doi.org/10.1248/bpb.b21-00332] [PMID: 34719640]
[93]
Lakhman, S.S.; Ma, Q.; Morse, G.D. Pharmacogenomics of CYP3A: Considerations for HIV treatment. Pharmacogenomics, 2009, 10(8), 1323-1339.
[http://dx.doi.org/10.2217/pgs.09.53] [PMID: 19663676]
[94]
Lewis, D.F.V. Hydrogen bonding in human p450-substrate interactions: a major contribution to binding affinity. ScientificWorldJournal, 2004, 4, 1074-1082.
[http://dx.doi.org/10.1100/tsw.2004.210] [PMID: 15632987]
[95]
Barnholtz-Sloan, J.S.; Guan, X.; Zeigler-Johnson, C.; Meropol, N.J.; Rebbeck, T.R. Decision tree-based modeling of androgen pathway genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev., 2011, 20(6), 1146-1155.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0996] [PMID: 21493872]
[96]
Uno, Y.; Matsuno, K.; Nakamura, C.; Utoh, M.; Yamazaki, H. Cloning, expression, and characterization of CYP3A43 cDNA in cynomolgus macaque (Macaca fascicularis). Drug Metab. Lett., 2009, 3(4), 228-233.
[http://dx.doi.org/10.2174/187231209790218127] [PMID: 20041831]
[97]
Rebbeck, T.R.; Rennert, H.; Walker, A.H.; Panossian, S.; Tran, T.; Walker, K.; Spangler, E.; Patacsil-Coomes, M.; Sachdeva, R.; Wein, A.J.; Malkowicz, S.B.; Zeigler-Johnson, C. Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int. J. Cancer, 2008, 123(6), 1385-1389.
[http://dx.doi.org/10.1002/ijc.23687] [PMID: 18566991]
[98]
Zeigler-Johnson, C.; Friebel, T.; Walker, A.H.; Wang, Y.; Spangler, E.; Panossian, S.; Patacsil, M.; Aplenc, R.; Wein, A.J.; Malkowicz, S.B.; Rebbeck, T.R. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res., 2004, 64(22), 8461-8467.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1651] [PMID: 15548719]
[99]
Justenhoven, C.; Winter, S.; Hamann, U.; Haas, S.; Fischer, H.P.; Pesch, B.; Brüning, T.; Ko, Y.D.; Brauch, H. The frameshift polymorphism CYP3A43_74_delA is associated with poor differentiation of breast tumors. Cancer, 2010, 116(23), 5358-5364.
[http://dx.doi.org/10.1002/cncr.25508] [PMID: 20715157]
[100]
Yu, T.; Wang, X.; Zhu, G.; Han, C.; Su, H.; Liao, X.; Yang, C.; Qin, W.; Huang, K.; Peng, T. The prognostic value of differentially expressed CYP3A subfamily members for hepatocellular carcinoma. Cancer Manag. Res., 2018, 10, 1713-1726.
[http://dx.doi.org/10.2147/CMAR.S159425] [PMID: 29983591]
[101]
Maksymchuk, O.V.; Kashuba, V.I. Altered expression of cytochrome P450 enzymes involved in metabolism of androgens and vitamin D in the prostate as a risk factor for prostate cancer. Pharmacol. Rep., 2020, 72(5), 1161-1172.
[http://dx.doi.org/10.1007/s43440-020-00133-y] [PMID: 32681429]
[102]
Bellamine, A.; Wang, Y.; Waterman, M.R.; Gainer, J.V., III; Dawson, E.P.; Brown, N.J.; Capdevila, J.H. Characterization of the CYP4A11 gene, a second CYP4A gene in humans. Arch. Biochem. Biophys., 2003, 409(1), 221-227.
[http://dx.doi.org/10.1016/S0003-9861(02)00545-3] [PMID: 12464262]
[103]
Durairaj, P.; Fan, L.; Machalz, D.; Wolber, G.; Bureik, M. Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett., 2019, 593(16), 2214-2225.
[http://dx.doi.org/10.1002/1873-3468.13489] [PMID: 31199497]
[104]
Lino Cardenas, C.L.; Renault, N.; Farce, A.; Cauffiez, C.; Allorge, D.; Lo-Guidice, J.M.; Lhermitte, M.; Chavatte, P.; Broly, F.; Chevalier, D. Genetic polymorphism of CYP4A11 and CYP4A22 genes and in silico insights from comparative 3D modelling in a French population. Gene, 2011, 487(1), 10-20.
[http://dx.doi.org/10.1016/j.gene.2011.07.015] [PMID: 21820496]
[105]
Curran, I.; Hierlihy, S.L.; Liston, V.; Pantazopoulos, P.; Nunnikhoven, A.; Tittlemier, S.; Barker, M.; Trick, K.; Bondy, G. Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J. Toxicol. Environ. Health A, 2008, 71(23), 1526-1541.
[http://dx.doi.org/10.1080/15287390802361763] [PMID: 18923995]
[106]
Udali, S.; Guarini, P.; Ruzzenente, A.; Ferrarini, A.; Guglielmi, A.; Lotto, V.; Tononi, P.; Pattini, P.; Moruzzi, S.; Campagnaro, T.; Conci, S.; Olivieri, O.; Corrocher, R.; Delledonne, M.; Choi, S.W.; Friso, S. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin. Epigenetics, 2015, 7(1), 43.
[http://dx.doi.org/10.1186/s13148-015-0077-1] [PMID: 25945129]
[107]
Hiratsuka, M.; Nozawa, H.; Katsumoto, Y.; Moteki, T.; Sasaki, T.; Konno, Y.; Mizugaki, M. Genetic polymorphisms and haplotype structures of the CYP4A22 gene in a Japanese population. Mutat. Res., 2006, 599(1-2), 98-104.
[http://dx.doi.org/10.1016/j.mrfmmm.2006.02.008] [PMID: 16806293]
[108]
Gajendrarao, P.; Krishnamoorthy, N.; Sakkiah, S.; Lazar, P.; Lee, K.W. Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site. J. Mol. Graph. Model., 2010, 28(6), 524-532.
[http://dx.doi.org/10.1016/j.jmgm.2009.11.010] [PMID: 20079672]
[109]
Gainer, J.V.; Bellamine, A.; Dawson, E.P.; Womble, K.E.; Grant, S.W.; Wang, Y.; Cupples, L.A.; Guo, C.Y.; Demissie, S.; O’Donnell, C.J.; Brown, N.J.; Waterman, M.R.; Capdevila, J.H. Functional variant of CYP4A11 20-hydroxyeicosatetraenoic acid synthase is associated with essential hypertension. Circulation, 2005, 111(1), 63-69.
[http://dx.doi.org/10.1161/01.CIR.0000151309.82473.59] [PMID: 15611369]
[110]
Alexanian, A.; Miller, B.; Roman, R.J.; Sorokin, A. 20-HETE-producing enzymes are up-regulated in human cancers. Cancer Genomics Proteomics, 2012, 9(4), 163-169.
[PMID: 22798501]
[111]
Kim, S.; Kim, J.M.; Lee, H.J.; Lim, J.S.; Seong, I.O.; Kim, K.H. Alteration of CYP4A11 expression in renal cell carcinoma: Diagnostic and prognostic implications. J. Cancer, 2020, 11(6), 1478-1485.
[http://dx.doi.org/10.7150/jca.36438] [PMID: 32047554]
[112]
Qin, F.; Xu, H.; Wei, G.; Ji, Y.; Yu, J.; Hu, C.; Yuan, C.; Ma, Y.; Qian, J.; Li, L.; Huo, J. A prognostic model based on the immune-related lncRNAs in colorectal cancer. Front. Genet., 2021, 12, 658736.
[http://dx.doi.org/10.3389/fgene.2021.658736] [PMID: 33959151]
[113]
Chen, X.W.; Yu, T.J.; Zhang, J.; Li, Y.; Chen, H.L.; Yang, G.F.; Yu, W.; Liu, Y.Z.; Liu, X.X.; Duan, C.F.; Tang, H.L.; Qiu, M.; Wang, C.L.; Zheng, H.; Yue, J.; Guo, A.M.; Yang, J. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene, 2017, 36(35), 5045-5057.
[http://dx.doi.org/10.1038/onc.2017.118] [PMID: 28481877]
[114]
Plenty, N.L.; Faulkner, J.L.; Cotton, J.; Spencer, S.K.; Wallace, K.; LaMarca, B.; Murphy, S.R. Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins Other Lipid Mediat., 2018, 136, 15-22.
[http://dx.doi.org/10.1016/j.prostaglandins.2018.03.001] [PMID: 29588191]
[115]
Cui, X.; Nelson, D.R.; Strobel, H.W. A novel human cytochrome P450 4F isoform (CYP4F11): cDNA cloning, expression, and genomic structural characterization. Genomics, 2000, 68(2), 161-166.
[http://dx.doi.org/10.1006/geno.2000.6276] [PMID: 10964514]
[116]
Kalsotra, A.; Turman, C.M.; Kikuta, Y.; Strobel, H.W. Expression and characterization of human cytochrome P450 4F11: Putative role in the metabolism of therapeutic drugs and eicosanoids. Toxicol. Appl. Pharmacol., 2004, 199(3), 295-304.
[http://dx.doi.org/10.1016/j.taap.2003.12.033] [PMID: 15364545]
[117]
Wang, Y.; Bell, J.C.; Keeney, D.S.; Strobel, H.W. Gene regulation of CYP4F11 in human keratinocyte HaCaT cells. Drug Metab. Dispos., 2010, 38(1), 100-107.
[http://dx.doi.org/10.1124/dmd.109.029025] [PMID: 19812349]
[118]
Bell, J.C.; Strobel, H.W. Regulation of cytochrome P450 4F11 by nuclear transcription factor-κ. B. Drug Metab. Dispos., 2012, 40(1), 205-211.
[http://dx.doi.org/10.1124/dmd.111.041178] [PMID: 22011441]
[119]
Zhang, T.; Zhan, Z.; Chen, Y.; Chen, J.; Han, W.; Liang, Z.; Liu, Q.; Liu, S.; Tang, L. Regulation of cytochrome P450 4F11 expression by liver X receptor alpha. Int. Immunopharmacol., 2021, 90, 107240.
[http://dx.doi.org/10.1016/j.intimp.2020.107240] [PMID: 33310663]
[120]
Yi, M.; Cho, S.A.; Min, J.; Kim, D.H.; Shin, J.G.; Lee, S.J. Functional characterization of a common CYP4F11 genetic variant and identification of functionally defective CYP4F11 variants in erythromycin metabolism and 20-HETE synthesis. Arch. Biochem. Biophys., 2017, 620, 43-51.
[http://dx.doi.org/10.1016/j.abb.2017.03.010] [PMID: 28347661]
[121]
Edson, K.Z.; Prasad, B.; Unadkat, J.D.; Suhara, Y.; Okano, T.; Guengerich, F.P.; Rettie, A.E. Cytochrome P450-dependent catabolism of vitamin K: ω-hydroxylation catalyzed by human CYP4F2 and CYP4F11. Biochemistry, 2013, 52(46), 8276-8285.
[http://dx.doi.org/10.1021/bi401208m] [PMID: 24138531]
[122]
Dhar, M.; Sepkovic, D.W.; Hirani, V.; Magnusson, R.P.; Lasker, J.M. Omega oxidation of 3-hydroxy fatty acids by the human CYP4F gene subfamily enzyme CYP4F11. J. Lipid Res., 2008, 49(3), 612-624.
[http://dx.doi.org/10.1194/jlr.M700450-JLR200] [PMID: 18065749]
[123]
Hardwick, J.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol., 2008, 75(12), 2263-2275.
[http://dx.doi.org/10.1016/j.bcp.2008.03.004] [PMID: 18433732]
[124]
Floriano-Sánchez, E.; Castro-Marín, M.; Noemí, C-R.; López-Silvestre, J.C.; Zapata-Villalba, M.A.; Campos-Salcedo, J.G. Marcadores moleculares en cáncer de próstata: Citocromos p450 (CYPs), CYP4F11 y CYP8A1, nuevos citocromos relacionados. Rev. Mex. Urol., 2012, 72(02), 45-49.
[125]
Alnabulsi, A.; Swan, R.; Cash, B.; Alnabulsi, A.; Murray, G.I. The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance. Br. J. Cancer, 2017, 116(12), 1612-1620.
[http://dx.doi.org/10.1038/bjc.2017.135] [PMID: 28557975]
[126]
Ye, Z.; Zou, S.; Niu, Z.; Xu, Z.; Hu, Y. A novel risk model based on lipid metabolism-associated genes predicts prognosis and indicates immune microenvironment in breast cancer. Front. Cell Dev. Biol., 2021, 9, 691676.
[http://dx.doi.org/10.3389/fcell.2021.691676] [PMID: 34195202]
[127]
Handa, Y.; Fukushima, S.; Yo, S.; Osawa, M.; Murao, T.; Handa, O.; Matsumoto, H.; Umegaki, E.; Sakakibara, T.; Shiotani, A. A novel gene associated with small bowel bleeding in patients taking low-dose aspirin. Dig. Liver Dis., 2021, 53(7), 841-845.
[http://dx.doi.org/10.1016/j.dld.2021.04.038] [PMID: 34059446]
[128]
Wang, C.; Chen, F.; Liu, Y.; Xu, Q.; Guo, L.; Zhang, X.; Ruan, Y.; Shi, Y.; Shen, L.; Li, M.; Du, H.; Sun, X.; Ma, J.; He, L.; Qin, S. Genetic association of drug response to erlotinib in Chinese advanced non-small cell lung cancer patients. Front. Pharmacol., 2018, 9, 360.
[http://dx.doi.org/10.3389/fphar.2018.00360] [PMID: 29695969]
[129]
Winterton, S.E.; Capota, E.; Wang, X.; Chen, H.; Mallipeddi, P.L.; Williams, N.S.; Posner, B.A.; Nijhawan, D.; Ready, J.M. Discovery of cytochrome P450 4F11 activated inhibitors of stearoyl coenzyme A desaturase. J. Med. Chem., 2018, 61(12), 5199-5221.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00052] [PMID: 29869888]
[130]
Lefèvre, C.; Bouadjar, B.; Ferrand, V.; Tadini, G.; Mégarbané, A.; Lathrop, M.; Prud’homme, J.F.; Fischer, J. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum. Mol. Genet., 2006, 15(5), 767-776.
[http://dx.doi.org/10.1093/hmg/ddi491] [PMID: 16436457]
[131]
Nilsson, T.; Ivanov, I.V.; Oliw, E.H. LC–MS/MS analysis of epoxyalcohols and epoxides of arachidonic acid and their oxygenation by recombinant CYP4F8 and CYP4F22. Arch. Biochem. Biophys., 2010, 494(1), 64-71.
[http://dx.doi.org/10.1016/j.abb.2009.11.013] [PMID: 19919823]
[132]
Kirischian, N.L.; Wilson, J.Y. Phylogenetic and functional analyses of the cytochrome P450 family 4. Mol. Phylogenet. Evol., 2012, 62(1), 458-471.
[http://dx.doi.org/10.1016/j.ympev.2011.10.016] [PMID: 22079551]
[133]
Kelly, E.J.; Nakano, M.; Rohatgi, P.; Yarov-Yarovoy, V.; Rettie, A.E. Finding homes for orphan cytochrome P450s: CYP4V2 and CYP4F22 in disease states. Mol. Interv., 2011, 11(2), 124-132.
[http://dx.doi.org/10.1124/mi.11.2.10] [PMID: 21540472]
[134]
Hsu, M.H.; Savas, Ü.; Griffin, K.J.; Johnson, E.F. Human cytochrome p450 family 4 enzymes: function, genetic variation and regulation. Drug Metab. Rev., 2007, 39(2-3), 515-538.
[http://dx.doi.org/10.1080/03602530701468573] [PMID: 17786636]
[135]
Ohno, Y.; Nakamichi, S.; Ohkuni, A.; Kamiyama, N.; Naoe, A.; Tsujimura, H.; Yokose, U.; Sugiura, K.; Ishikawa, J.; Akiyama, M.; Kihara, A. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc. Natl. Acad. Sci. USA, 2015, 112(25), 7707-7712.
[http://dx.doi.org/10.1073/pnas.1503491112] [PMID: 26056268]
[136]
Esperón-Moldes, U.; Ginarte-Val, M.; Rodríguez-Pazos, L.; Fachal, L.; Martín-Santiago, A.; Vicente, A.; Jiménez-Gallo, D.; Guillén-Navarro, E.; Sampol, L.M.; González-Enseñat, M.A.; Vega, A. Novel CYP4F22 mutations associated with autosomal recessive congenital ichthyosis (ARCI). Study of the CYP4F22 c.1303C>T founder mutation. PLoS One, 2020, 15(2), e0229025.
[http://dx.doi.org/10.1371/journal.pone.0229025] [PMID: 32069299]
[137]
Hotz, A.; Bourrat, E.; Küsel, J.; Oji, V.; Alter, S.; Hake, L.; Korbi, M.; Ott, H.; Hausser, I.; Zimmer, A.D.; Fischer, J. Mutation update for CYP4F22 variants associated with autosomal recessive congenital ichthyosis. Hum. Mutat., 2018, 39(10), 1305-1313.
[http://dx.doi.org/10.1002/humu.23594] [PMID: 30011118]
[138]
Miyamoto, M.; Itoh, N.; Sawai, M.; Sassa, T.; Kihara, A. Severe skin permeability barrier dysfunction in knockout mice deficient in a fatty acid ω-hydroxylase crucial to acylceramide production. J. Invest. Dermatol., 2020, 140(2), 319-326.e4.
[http://dx.doi.org/10.1016/j.jid.2019.07.689] [PMID: 31356814]
[139]
Mackay, D.S.; Halford, S. Focus on Molecules: Cytochrome P450 family 4, subfamily V, polypeptide 2 (CYP4V2). Exp. Eye Res., 2012, 102, 111-112.
[http://dx.doi.org/10.1016/j.exer.2011.06.019] [PMID: 21745470]
[140]
Li, A.; Jiao, X.; Munier, F.L.; Schorderet, D.F.; Yao, W.; Iwata, F.; Hayakawa, M.; Kanai, A.; Shy Chen, M.; Alan Lewis, R.; Heckenlively, J.; Weleber, R.G.; Traboulsi, E.I.; Zhang, Q.; Xiao, X.; Kaiser-Kupfer, M.; Sergeev, Y.V.; Hejtmancik, J.F. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am. J. Hum. Genet., 2004, 74(5), 817-826.
[http://dx.doi.org/10.1086/383228] [PMID: 15042513]
[141]
Nakano, M.; Kelly, E.J.; Wiek, C.; Hanenberg, H.; Rettie, A.E. CYP4V2 in Bietti’s crystalline dystrophy: ocular localization, metabolism of ω-3-polyunsaturated fatty acids, and functional deficit of the p.H331P variant. Mol. Pharmacol., 2012, 82(4), 679-686.
[http://dx.doi.org/10.1124/mol.112.080085] [PMID: 22772592]
[142]
Yi, M.; Shin, J.G.; Lee, S.J. Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma. Toxicol. Appl. Pharmacol., 2017, 330, 100-106.
[http://dx.doi.org/10.1016/j.taap.2017.07.009] [PMID: 28729181]
[143]
Nakano, M.; Lockhart, C.M.; Kelly, E.J.; Rettie, A.E. Ocular cytochrome P450s and transporters: roles in disease and endobiotic and xenobiotic disposition. Drug Metab. Rev., 2014, 46(3), 247-260.
[http://dx.doi.org/10.3109/03602532.2014.921190] [PMID: 24856391]
[144]
Safdar, H.; Cleuren, A.C.A.; Cheung, K.L.; Gonzalez, F.J.; Vos, H.L.; Inoue, Y.; Reitsma, P.H.; van Vlijmen, B.J.M. Regulation of the F11, Klkb1, Cyp4v3 gene cluster in livers of metabolically challenged mice. PLoS One, 2013, 8(9), e74637.
[http://dx.doi.org/10.1371/journal.pone.0074637] [PMID: 24066149]
[145]
Okialda, K.A. Screening for microRNA regulators of an orphan cytochrome P450 4V2 (CYP4V2), University of Washington 2012. Available from: https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/20797/Okialda_washington_0250O_10452.pdf?sequence=1&isAllowed=y
[146]
Lockhart, C.M.; Kelly, E.J. Function and Regulation of Cytochrome P450 4V2 and the Implications in Bietti’s Crystalline Dystrophy, University of Washington 2016. Available from: https://search.proquest.com/docview/1804413009?accountid=2837%5Cnhttp://libwvu.on.worldcat.org/atoztitles/link?sid=ProQ:&issn=&volume=&issue=&title=Function+and+Regulation+of+Cytochrome+P450+4V2+and+the+Implications+in+Bietti%27s+Crystalline+Dystrophy&spa
[147]
Xiao, X.; Mai, G.; Li, S.; Guo, X.; Zhang, Q. Identification of CYP4V2 mutation in 21 families and overview of mutation spectrum in Bietti crystalline corneoretinal dystrophy. Biochem. Biophys. Res. Commun., 2011, 409(2), 181-186.
[http://dx.doi.org/10.1016/j.bbrc.2011.04.112] [PMID: 21565171]
[148]
Jarrar, Y.B.; Shin, J.G.; Lee, S.J. Identification and functional characterization of CYP4V2 genetic variants exhibiting decreased activity of lauric acid metabolism. Ann. Hum. Genet., 2020, 84(5), 400-411.
[http://dx.doi.org/10.1111/ahg.12388] [PMID: 32396266]
[149]
Kumar, S. Comparative modeling and molecular docking of orphan human CYP4V2 protein with fatty acid substrates: Insights into substrate specificity. Bioinformation, 2011, 7(7), 360-365.
[http://dx.doi.org/10.6026/97320630007360] [PMID: 22355237]
[150]
Nakano, M.; Kelly, E.J.; Rettie, A.E. Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase. Drug Metab. Dispos., 2009, 37(11), 2119-2122.
[http://dx.doi.org/10.1124/dmd.109.028530] [PMID: 19661213]
[151]
Meng, X.H.; He, Y.; Zhao, T.T.; Li, S.Y.; Liu, Y.; Yin, Z.Q. Novel mutations in CYP4V2 in Bietti corneoretinal crystalline dystrophy: Next-generation sequencing technology and genotype-phenotype correlations. Mol. Vis., 2019, 25, 654-662.
[PMID: 31741654]
[152]
Yue, Y.; Sun, Q.; Man, C.; Fu, Y. Association of the CYP4V2 polymorphism rs13146272 with venous thromboembolism in a Chinese population. Clin. Exp. Med., 2019, 19(1), 159-166.
[http://dx.doi.org/10.1007/s10238-018-0529-y] [PMID: 30276487]
[153]
Eun, H.S.; Cho, S.Y.; Lee, B.S.; Seong, I.O.; Kim, K.H. Profiling cytochrome P450 family 4 gene expression in human hepatocellular carcinoma. Mol. Med. Rep., 2018, 18(6), 4865-4876.
[http://dx.doi.org/10.3892/mmr.2018.9526] [PMID: 30280198]
[154]
Savas, Ü.; Hsu, M.H.; Griffin, K.J.; Bell, D.R.; Johnson, E.F. Conditional regulation of the human CYP4X1 and CYP4Z1 genes. Arch. Biochem. Biophys., 2005, 436(2), 377-385.
[http://dx.doi.org/10.1016/j.abb.2005.02.022] [PMID: 15797250]
[155]
Stark, K.; Dostalek, M.; Guengerich, F.P. Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. FEBS J., 2008, 275(14), 3706-3717.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06518.x] [PMID: 18549450]
[156]
Kumar, S. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. BMC Res. Notes, 2015, 8(1), 9.
[http://dx.doi.org/10.1186/s13104-015-0976-4] [PMID: 25595103]
[157]
Snider, N.T.; Walker, V.J.; Hollenberg, P.F. Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol. Rev., 2010, 62(1), 136-154.
[http://dx.doi.org/10.1124/pr.109.001081] [PMID: 20133390]
[158]
Al-Anizy, M.; Horley, N.J.; Kuo, C.W.S.; Gillett, L.C.; Laughton, C.A.; Kendall, D.; Barrett, D.A.; Parker, T.; Bell, D.R. Cytochrome P450 Cyp4x1 is a major P450 protein in mouse brain. FEBS J., 2006, 273(5), 936-947.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05119.x] [PMID: 16478468]
[159]
Carver, K.A.; Lourim, D.; Tryba, A.K.; Harder, D.R. Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature. Am. J. Physiol. Cell Physiol., 2014, 307(11), C989-C998.
[http://dx.doi.org/10.1152/ajpcell.00401.2013] [PMID: 25055826]
[160]
Kharkwal, H.; Batool, F.; Koentgen, F.; Bell, D.R.; Kendall, D.A.; Ebling, F.J.P.; Duce, I.R. Generation and phenotypic characterisation of a cytochrome P450 4x1 knockout mouse. PLoS One, 2017, 12(12), e0187959.
[http://dx.doi.org/10.1371/journal.pone.0187959] [PMID: 29227996]
[161]
Murray, G.I.; Patimalla, S.; Stewart, K.N.; Miller, I.D.; Heys, S.D. Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 2010, 57(2), 202-211.
[http://dx.doi.org/10.1111/j.1365-2559.2010.03606.x] [PMID: 20716162]
[162]
Hlaváč V.; Václavíková, R.; Brynychová, V.; Ostašov, P.; Koževnikovová, R.; Kopečková, K.; Vrána, D.; Gatěk, J.; Souček, P. Role of genetic variation in cytochromes P450 in breast cancer prognosis and therapy response. Int. J. Mol. Sci., 2021, 22(6), 2826.
[http://dx.doi.org/10.3390/ijms22062826] [PMID: 33802237]
[163]
Kozlov, A.P. Expression of evolutionarily novel genes in tumors. Infect. Agent. Cancer, 2016, 11(1), 34.
[http://dx.doi.org/10.1186/s13027-016-0077-6] [PMID: 27437030]
[164]
NCBI. CYP4Z1 - cytochrome P450 family 4 subfamily Z member 1, National Library of Medicine, National Center for Biotechnology Information 2022. Available from: https://www.ncbi.nlm.nih. gov/gene/199974/ortholog/?scope=9347
[165]
Rieger, M.A.; Ebner, R.; Bell, D.R.; Kiessling, A.; Rohayem, J.; Schmitz, M.; Temme, A.; Rieber, E.P.; Weigle, B. Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Res., 2004, 64(7), 2357-2364.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0849] [PMID: 15059886]
[166]
Nunna, V.; Jalal, N.; Bureik, M. Anti-CYP4Z1 autoantibodies detected in breast cancer patients. Cell. Mol. Immunol., 2017, 14(6), 572-574.
[http://dx.doi.org/10.1038/cmi.2017.21] [PMID: 28435160]
[167]
Yan, Q.; Machalz, D.; Zöllner, A.; Sorensen, E.J.; Wolber, G.; Bureik, M. Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochem. Pharmacol., 2017, 146, 174-187.
[http://dx.doi.org/10.1016/j.bcp.2017.09.011] [PMID: 28951277]
[168]
Du, W.; Machalz, D.; Yan, Q.; Sorensen, E.J.; Wolber, G.; Bureik, M. Importance of asparagine-381 and arginine-487 for substrate recognition in CYP4Z1. Biochem. Pharmacol., 2020, 174, 113850.
[http://dx.doi.org/10.1016/j.bcp.2020.113850] [PMID: 32044355]
[169]
Al-saraireh, Y.M.; Alboaisa, N.S.; Alrawashdeh, H.M.; Hamdan, O.; Al-Sarayreh, S.; Al-Shuneigat, J.M.; Nofal, M.N. Screening of cytochrome 4Z1 expression in human non-neoplastic, pre-neoplastic and neoplastic tissues. Ecancermedicalscience, 2020, 14, 1114.
[http://dx.doi.org/10.3332/ecancer.2020.1114] [PMID: 33144882]
[170]
Al-saraireh, Y.M.; Alshammari, F.O.F.O.; Youssef, A.M.M.; Al-Sarayreh, S.; Almuhaisen, G.H.; Alnawaiseh, N.; Al Shuneigat, J.M.; Alrawashdeh, H.M. Profiling of CYP4Z1 and CYP1B1 expression in bladder cancers. Sci. Rep., 2021, 11(1), 5581.
[http://dx.doi.org/10.1038/s41598-021-85188-4] [PMID: 33692504]
[171]
Bankovic, J.; Stojsic, J.; Jovanovic, D.; Andjelkovic, T.; Milinkovic, V.; Ruzdijic, S.; Tanic, N. Identification of genes associated with non-small-cell lung cancer promotion and progression. Lung Cancer, 2010, 67(2), 151-159.
[http://dx.doi.org/10.1016/j.lungcan.2009.04.010] [PMID: 19473719]
[172]
Leclerc, J.; Tournel, G.; Courcot-Ngoubo Ngangue, E.; Pottier, N.; Lafitte, J.J.; Jaillard, S.; Mensier, E.; Lhermitte, M.; Broly, F.; Lo-Guidice, J.M. Profiling gene expression of whole cytochrome P450 superfamily in human bronchial and peripheral lung tissues: Differential expression in non-small cell lung cancers. Biochimie, 2010, 92(3), 292-306.
[http://dx.doi.org/10.1016/j.biochi.2009.12.007] [PMID: 20034539]
[173]
Khayeka-Wandabwa, C.; Ma, X.; Cao, X.; Nunna, V.; Pathak, J.L.; Bernhardt, R.; Cai, P.; Bureik, M. Plasma membrane localization of CYP4Z1 and CYP19A1 and the detection of anti-CYP19A1 autoantibodies in humans. Int. Immunopharmacol., 2019, 73, 64-71.
[http://dx.doi.org/10.1016/j.intimp.2019.05.003] [PMID: 31082724]
[174]
Lemaire, B.; Kubota, A.; O’Meara, C.M.; Lamb, D.C.; Tanguay, R.L.; Goldstone, J.V.; Stegeman, J.J. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders. Toxicol. Appl. Pharmacol., 2016, 296, 73-84.
[http://dx.doi.org/10.1016/j.taap.2016.02.001] [PMID: 26853319]
[175]
Stark, K.; Wu, Z.L.; Bartleson, C.J.; Guengerich, F.P. mRNA distribution and heterologous expression of orphan cytochrome P450 20A1. Drug Metab. Dispos., 2008, 36(9), 1930-1937.
[http://dx.doi.org/10.1124/dmd.108.022020] [PMID: 18541694]
[176]
Buyssens, L.; De Clerck, L.; Schelstraete, W.; Dhaenens, M.; Deforce, D.; Ayuso, M.; Van Ginneken, C.; Van Cruchten, S. Hepatic cytochrome P450 abundance and activity in the developing and adult Göttingen minipig: Pivotal data for PBPK modeling. Front. Pharmacol., 2021, 12, 665644.
[http://dx.doi.org/10.3389/fphar.2021.665644] [PMID: 33935788]
[177]
Han, J; Kim, DH; Seo, JS; Kim, IC; Nelson, DR; Puthumana, J Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp Biochem Physiol Part - C Toxicol Pharmacol, 2017, 193, 42-49.
[178]
Atambayeva, S.; Niyazova, R.; Ivashchenko, A.; Pyrkova, A.; Pinsky, I.; Akimniyazova, A.; Labeit, S. The binding sites of miR-619-5p in the mRNAs of human and orthologous genes. BMC Genomics, 2017, 18(1), 428.
[http://dx.doi.org/10.1186/s12864-017-3811-6] [PMID: 28569192]
[179]
Durairaj, P.; Fan, L.; Sharma, S.S.; Jie, Z.; Bureik, M. Identification of new probe substrates for human CYP20A1. Biol. Chem., 2020, 401(3), 361-365.
[http://dx.doi.org/10.1515/hsz-2019-0307] [PMID: 31655790]
[180]
Puthumana, J.; Lee, M.C.; Park, J.C.; Kim, H.S.; Hwang, D.S.; Han, J.; Lee, J.S. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus. Aquat. Toxicol., 2017, 184, 116-122.
[http://dx.doi.org/10.1016/j.aquatox.2017.01.011] [PMID: 28131078]
[181]
Hundhausen, C.; Frank, J.; Rimbach, G.; Stoecklin, E.; Muller, P.Y.; Barella, L. Effect of vitamin E on cytochrome P450 mRNA levels in cultured hepatocytes (HepG2) and in rat liver. Cancer Genomics Proteomics, 2006, 3(3-4), 183-190.
[PMID: 31394696]
[182]
Li, M.; Li, A.; He, R.; Dang, W.; Liu, X.; Yang, T.; Shi, P.; Bu, X.; Gao, D.; Zhang, N.; Du, S.; Jin, T.; Chen, M. Gene polymorphism of cytochrome P450 significantly affects lung cancer susceptibility. Cancer Med., 2019, 8(10), 4892-4905.
[http://dx.doi.org/10.1002/cam4.2367] [PMID: 31264381]
[183]
Aslibekyan, S.; Brown, E.E.; Reynolds, R.J.; Redden, D.T.; Morgan, S.; Baggott, J.E.; Sha, J.; Moreland, L.W.; O’Dell, J.R.; Curtis, J.R.; Mikuls, T.R.; Bridges, S.L., Jr; Arnett, D.K. Genetic variants associated with methotrexate efficacy and toxicity in early rheumatoid arthritis: results from the treatment of early aggressive rheumatoid arthritis trial. Pharmacogenomics J., 2014, 14(1), 48-53.
[http://dx.doi.org/10.1038/tpj.2013.11] [PMID: 23545897]
[184]
Wu, Z.L.; Bartleson, C.J.; Ham, A.J.L.; Guengerich, F.P. Heterologous expression, purification, and properties of human cytochrome P450 27C1. Arch. Biochem. Biophys., 2006, 445(1), 138-146.
[http://dx.doi.org/10.1016/j.abb.2005.11.002] [PMID: 16360114]
[185]
Volkov, L.I.; Kim-Han, J.S.; Saunders, L.M.; Poria, D.; Hughes, A.E.O.; Kefalov, V.J.; Parichy, D.M.; Corbo, J.C. Thyroid hormone receptors mediate two distinct mechanisms of long-wavelength vision. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 15262-15269.
[http://dx.doi.org/10.1073/pnas.1920086117] [PMID: 32541022]
[186]
Johnson, K.M.; Phan, T.T.N.; Albertolle, M.E.; Guengerich, F.P. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J. Biol. Chem., 2017, 292(33), 13672-13687.
[http://dx.doi.org/10.1074/jbc.M116.773937] [PMID: 28701464]
[187]
Morshedian, A.; Toomey, M.B.; Pollock, G.E.; Frederiksen, R.; Enright, J.M.; McCormick, S.D.; Cornwall, M.C.; Fain, G.L.; Corbo, J.C. Cambrian origin of the CYP27C1-mediated vitamin A 1 -to-A 2 switch, a key mechanism of vertebrate sensory plasticity. R. Soc. Open Sci., 2017, 4(7), 170362.
[http://dx.doi.org/10.1098/rsos.170362] [PMID: 28791166]
[188]
Yuan, Y.H.; Zhou, J.; Zhang, Y.; Xu, M.D.; Wu, J.; Li, W.; Wu, M.Y.; Li, D.M. Identification of key genes and pathways downstream of the β catenin TCF7L1 complex in pancreatic cancer cells using bioinformatics analysis. Oncol. Lett., 2019, 18(2), 1117-1132.
[http://dx.doi.org/10.3892/ol.2019.10444] [PMID: 31423172]
[189]
Kramlinger, V.M.; Nagy, L.D.; Fujiwara, R.; Johnson, K.M.; Phan, T.T.N.; Xiao, Y.; Enright, J.M.; Toomey, M.B.; Corbo, J.C.; Guengerich, F.P. Human cytochrome P450 27C1 catalyzes 3,4‐desaturation of retinoids. FEBS Lett., 2016, 590(9), 1304-1312.
[http://dx.doi.org/10.1002/1873-3468.12167] [PMID: 27059013]
[190]
Corbo, J.C. Vitamin A1/A2 chromophore exchange: Its role in spectral tuning and visual plasticity. Dev. Biol., 2021, 475, 145-155.
[http://dx.doi.org/10.1016/j.ydbio.2021.03.002] [PMID: 33684435]
[191]
Härer, A.; Meyer, A.; Torres-Dowdall, J. Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evol. Lett., 2018, 2(4), 341-354.
[http://dx.doi.org/10.1002/evl3.71] [PMID: 30283686]
[192]
Enright, J.M.; Toomey, M.B.; Sato, S.; Temple, S.E.; Allen, J.R.; Fujiwara, R.; Kramlinger, V.M.; Nagy, L.D.; Johnson, K.M.; Xiao, Y.; How, M.J.; Johnson, S.L.; Roberts, N.W.; Kefalov, V.J.; Guengerich, F.P.; Corbo, J.C. Cyp27c1 red-shifts the spectral sensitivity of photoreceptors by converting Vitamin A1 into A2. Curr. Biol., 2015, 25(23), 3048-3057.
[http://dx.doi.org/10.1016/j.cub.2015.10.018] [PMID: 26549260]
[193]
Hwang, J.T.; Baik, S.H.; Choi, J.S.; Lee, K.H.; Rhee, S.K. Genetic traits of avascular necrosis of the femoral head analyzed by array comparative genomic hybridization and real-time polymerase chain reaction. Orthopedics, 2011, 34(1), 01477447-20101123-04.
[http://dx.doi.org/10.3928/01477447-20101123-04] [PMID: 21210629]
[194]
Munir, M.S.; Weng, L.C.; Tang, W.; Basu, S.; Pankow, J.S.; Matijevic, N.; Cushman, M.; Boerwinkle, E.; Folsom, A.R. Genetic markers associated with plasma protein C level in African Americans: the atherosclerosis risk in communities (ARIC) study. Genet. Epidemiol., 2014, 38(8), 709-713.
[http://dx.doi.org/10.1002/gepi.21868] [PMID: 25376901]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy