Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Progress and Prospects in the Ruthenium Catalyzed Allylic Amination Reactions

Author(s): Rajan Archana, Thaipparambil Aneeja and Gopinathan Anilkumar*

Volume 26, Issue 17, 2022

Published on: 21 December, 2022

Page: [1615 - 1625] Pages: 11

DOI: 10.2174/1385272827666221209103336

Price: $65

Abstract

Ruthenium-catalyzed amination reactions have gained much attention in recent times. Due to the low cost and versatile nature of ruthenium, its chemistry is expanding rapidly. The amination reaction provides an efficient pathway to synthesize organonitrogen compounds. These reactions are highly regio- and stereoselective and exhibit wide substrate scope. This review gives an overview of the ruthenium-catalyzed allylic amination reactions covering literature up to 2021.

Keywords: Ruthenium catalysis, amines, allylic amination, regioselectivity, enantioselectivity, stereoselective.

Graphical Abstract
[1]
Kaur, N. Synthesis of five-membered N,N,N - and N,N,N,N -heterocyclic compounds: Applications of microwaves. Synth. Commun., 2015, 45(15), 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756]
[2]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6(2), 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[3]
Yin, G.; Liu, Q.; Ma, J.; She, N. Solvent- and catalyst-free synthesis of new hydroxylated trisubstituted pyridines under microwave irradiation. Green Chem., 2012, 14(6), 1796-1798.
[http://dx.doi.org/10.1039/c2gc35243e]
[4]
Kienle, M.; Reddy Dubbaka, S.; Brade, K.; Knochel, P. Modern Amination Reactions. Eur. J. Org. Chem., 2007, 2007(25), 4166-4176.
[http://dx.doi.org/10.1002/ejoc.200700391]
[5]
Park, Y.; Kim, Y.; Chang, S. Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and Applications. Chem. Rev., 2017, 117(13), 9247-9301.
[http://dx.doi.org/10.1021/acs.chemrev.6b00644] [PMID: 28051855]
[6]
Collet, F.; Dodd, R.H.; Dauban, P. Catalytic C–H amination: recent progress and future directions. Chem. Commun. (Camb.), 2009, 45(34), 5061-5074.
[http://dx.doi.org/10.1039/b905820f] [PMID: 20448953]
[7]
Dequirez, G.; Pons, V.; Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed., 2012, 51(30), 7384-7395.
[http://dx.doi.org/10.1002/anie.201201945] [PMID: 22730346]
[8]
Torres-Ochoa, R.O.; Buyck, T.; Wang, Q.; Zhu, J. Heteroannulation of arynes with α-amino imides: synthesis of 2,2-disubstituted indolin-3-ones and application to the enantioselective total synthesis of (+)-hinckdentine A. Angew. Chem. Int. Ed., 2018, 57(20), 5679-5683.
[http://dx.doi.org/10.1002/anie.201800746]
[9]
Enders, D.; Shilvock, J.P. Some recent applications of α-amino nitrile chemistry. Chem. Soc. Rev., 2000, 29(5), 359-373.
[http://dx.doi.org/10.1039/a908290e]
[10]
Li, P.; Cao, Z. Mechanism Insight into the Csp 3 –H Amination Catalyzed by the Metal Phthalocyanine. Organometallics, 2019, 38(2), 343-350.
[http://dx.doi.org/10.1021/acs.organomet.8b00747]
[11]
Tang, S.; Wang, S.; Liu, Y.; Cong, H.; Lei, A. Electrochemical oxidative C−H amination of phenols: Access to triarylamine derivatives. Angew. Chem. Int. Ed., 2018, 57(17), 4737-4741.
[http://dx.doi.org/10.1002/anie.201800240] [PMID: 29498166]
[12]
Shi, F.; Li, C.; Xia, M.; Miao, K.; Zhao, Y.; Tu, S.; Zheng, W.; Zhang, G.; Ma, N. Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorg. Med. Chem. Lett., 2009, 19(19), 5565-5568.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.046] [PMID: 19729303]
[13]
Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J. Med. Chem., 2014, 57(23), 9718-9739.
[http://dx.doi.org/10.1021/jm5010896] [PMID: 25207470]
[14]
Hili, R.; Yudin, A.K. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol., 2006, 2(6), 284-287.
[http://dx.doi.org/10.1038/nchembio0606-284] [PMID: 16710330]
[15]
Liu, Y.; Yang, Y.; Zhu, R.; Zhang, D. Computational clarification of synergetic Ru II/Cu I -metallaphotoredox catalysis in C(sp 3)–N cross-coupling reactions of alkyl redox-active esters with anilines. ACS Catal., 2020, 10(9), 5030-5041.
[http://dx.doi.org/10.1021/acscatal.0c00060]
[16]
Johannsen, M.; Jørgensen, K.A. Allylic Amination. Chem. Rev., 1998, 98(4), 1689-1708.
[http://dx.doi.org/10.1021/cr970343o] [PMID: 11848944]
[17]
Kazerouni, A.M.; McKoy, Q.A.; Blakey, S.B. Recent advances in oxidative allylic C–H functionalization via group IX-metal catalysis. Chem. Commun. (Camb.), 2020, 56(87), 13287-13300.
[http://dx.doi.org/10.1039/D0CC05554A] [PMID: 33015689]
[18]
Paul, F.; Patt, J.; Hartwig, J.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc., 1994, 116(13), 5969-5970.
[http://dx.doi.org/10.1021/ja00092a058]
[19]
Guram, A.S.; Buchwald, S.L. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. J. Am. Chem. Soc., 1994, 116(17), 7901-7902.
[http://dx.doi.org/10.1021/ja00096a059]
[20]
Dorel, R.; Grugel, C.P.; Haydl, A.M. The Buchwald–Hartwig Amination After 25 Years. Angew. Chem. Int. Ed., 2019, 58(48), 17118-17129.
[http://dx.doi.org/10.1002/anie.201904795] [PMID: 31166642]
[21]
Forero-Cortés, P.A.; Haydl, A.M. The 25th anniversary of the buchwald–hartwig amination: Development, applications, and outlook. Org. Process Res. Dev., 2019, 23(8), 1478-1483.
[http://dx.doi.org/10.1021/acs.oprd.9b00161]
[22]
Urgaonkar, S.; Xu, J.H.; Verkade, J.G. Application of a new bicyclic triaminophosphine ligand in Pd-catalyzed Buchwald-Hartwig amination reactions of aryl chlorides, bromides, and iodides. J. Org. Chem., 2003, 68(22), 8416-8423.
[http://dx.doi.org/10.1021/jo034994y] [PMID: 14575466]
[23]
Urgaonkar, S.; Verkade, J.G. Scope and limitations of Pd2(dba)3/P(i-BuNCH2CH2)3N-catalyzed Buchwald-Hartwig amination reactions of aryl chlorides. J. Org. Chem., 2004, 69(26), 9135-9142.
[http://dx.doi.org/10.1021/jo048716q] [PMID: 15609947]
[24]
Prima, D.O.; Madiyeva, M.; Burykina, J.V.; Minyaev, M.E.; Boiko, D.A.; Ananikov, V.P. Evidence for “cocktail”-type catalysis in Buchwald–Hartwig reaction. A mechanistic study. Catal. Sci. Technol., 2021, 11(21), 7171-7188.
[http://dx.doi.org/10.1039/D1CY01601F]
[25]
Anand, M.; Nørskov, J.K. Scaling Relations in Homogeneous Catalysis: Analyzing the Buchwald–Hartwig Amination Reaction. ACS Catal., 2020, 10(1), 336-345.
[http://dx.doi.org/10.1021/acscatal.9b04323]
[26]
Navarro, O.; Marion, N.; Mei, J.; Nolan, S.P. Rapid room temperature Buchwald-Hartwig and Suzuki-Miyaura couplings of heteroaromatic compounds employing low catalyst loadings. Chemistry, 2006, 12(19), 5142-5148.
[http://dx.doi.org/10.1002/chem.200600283] [PMID: 16628762]
[27]
Prabhu, R.N.; Ramesh, R. Synthesis and structural characterization of palladium(II) thiosemicarbazone complex: application to the Buchwald–Hartwig amination reaction. Tetrahedron Lett., 2013, 54(9), 1120-1124.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.070]
[28]
Paul, F.; Patt, J.; Hartwig, J.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc., 1994, 116(13), 5969-5970.
[http://dx.doi.org/10.1021/ja00092a058]
[29]
Guram, A.S.; Buchwald, S.L. Palladium catalyzed aromatic aminations with in situ generated Aminostannanes. J. Am. Chem. Soc., 1994, 116(17), 7901-7902.
[http://dx.doi.org/10.1021/ja00096a059]
[30]
Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J.; Winters, M.P.; Chan, D.M.T.; Combs, A. New aryl/heteroaryl CN bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett., 1998, 39(19), 2941-2944.
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8]
[31]
Chen, J.Q.; Li, J.H.; Dong, Z.B. A review on the latest progress of Chan- Lan coupling Reaction. Adv. Synth. Catal., 2020, 362(16), 3311-3331.
[http://dx.doi.org/10.1002/adsc.202000495]
[32]
Raghuvanshi, D.S.; Gupta, A.K.; Singh, K.N. Nickel-mediated N-arylation with arylboronic acids: an avenue to Chan-Lam coupling. Org. Lett., 2012, 14(17), 4326-4329.
[http://dx.doi.org/10.1021/ol3021836] [PMID: 22928959]
[33]
Moon, S.Y.; Nam, J.; Rathwell, K.; Kim, W.S. Copper-catalyzed Chan-Lam coupling between sulfonyl azides and boronic acids at room temperature. Org. Lett., 2014, 16(2), 338-341.
[http://dx.doi.org/10.1021/ol403717f] [PMID: 24404934]
[34]
Meng, T.; Wells, L.A.; Wang, T.; Wang, J.; Zhang, S.; Wang, J.; Kozlowski, M.C.; Jia, T. Biomolecule-compatible dehydrogenative chan–lam coupling of free sulfilimines. J. Am. Chem. Soc., 2022, 144(27), 12476-12487.
[http://dx.doi.org/10.1021/jacs.2c04627] [PMID: 35767727]
[35]
Yoo, W.J.; Tsukamoto, T.; Kobayashi, S. Visible-light-mediated chan-lam coupling reactions of aryl boronic acids and aniline derivatives. Angew. Chem. Int. Ed., 2015, 54(22), 6587-6590.
[http://dx.doi.org/10.1002/anie.201500074] [PMID: 25873290]
[36]
Wang, Y.; Meng, T.; Su, S.; Han, L.; Zhu, N.; Jia, T. Copper‐catalyzed chan‐lam coupling of NH‐diaryl sulfondiimines. Adv. Synth. Catal., 2022, 364(12), 2040-2046.
[http://dx.doi.org/10.1002/adsc.202200279]
[37]
Han, Y.; Zhang, M.; Zhang, Y.Q.; Zhang, Z.H. Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan–Lam coupling reaction of aryl boronic acids and amines. Green Chem., 2018, 20(21), 4891-4900.
[http://dx.doi.org/10.1039/C8GC02611D]
[38]
Fernandes, R.A.; Bhowmik, A.; Yadav, S.S. Advances in Cu and Ni-catalyzed Chan–Lam-type coupling: synthesis of diarylchalcogenides, Ar 2 –X (X = S, Se, Te). Org. Biomol. Chem., 2020, 18(47), 9583-9600.
[http://dx.doi.org/10.1039/D0OB02035D] [PMID: 33206103]
[39]
Won, S.Y.; Kim, S.E.; Kwon, Y.J.; Shin, I.; Ham, J.; Kim, W.S. Chan–Lam coupling reaction of sulfamoyl azides with arylboronic acids for synthesis of unsymmetrical N -arylsulfamides. RSC Advances, 2019, 9(5), 2493-2497.
[http://dx.doi.org/10.1039/C8RA09219B] [PMID: 35520509]
[40]
Kumari, K.; Kumar, S.; Singh, K.N.; Drew, M.G.B.; Singh, N. Synthesis and characterization of new square planar heteroleptic cationic complexes [Ni(II) β-oxodithioester-dppe] +; their use as a catalyst for Chan–Lam coupling. New J. Chem., 2020, 44(28), 12143-12153.
[http://dx.doi.org/10.1039/D0NJ01139H]
[41]
Shi, W.; Shi, Y.; Xü, M.; Zou, G.; Wu, X.Y. Chemoselective Chan-Lam coupling by directly using copper powders via mechanochemical metal activation for catalysis. Molecular Catalysis, 2022, 528, 112472.
[http://dx.doi.org/10.1016/j.mcat.2022.112472]
[42]
Bariwal, J.; Van der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2013, 42(24), 9283-9303.
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[43]
Müller, P.; Fruit, C. Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem. Rev., 2003, 103(8), 2905-2920.
[http://dx.doi.org/10.1021/cr020043t] [PMID: 12914485]
[44]
Davies, H.M.L.; Long, M.S. Recent advances in catalytic intramolecular C-H aminations. Angew. Chem. Int. Ed., 2005, 44(23), 3518-3520.
[http://dx.doi.org/10.1002/anie.200500554] [PMID: 15887207]
[45]
Henderson, J.L.; Buchwald, S.L. Efficient Pd-catalyzed amination reactions for heterocycle functionalization. Org. Lett., 2010, 12(20), 4442-4445.
[http://dx.doi.org/10.1021/ol101929v] [PMID: 20860403]
[46]
Noël, T.; Naber, J.R.; Hartman, R.L.; McMullen, J.P.; Jensen, K.F.; Buchwald, S.L. Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation. Chem. Sci. (Camb.), 2011, 2(2), 287-290.
[http://dx.doi.org/10.1039/C0SC00524J]
[47]
Fors, B.P.; Watson, D.A.; Biscoe, M.R.; Buchwald, S.L. A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides. J. Am. Chem. Soc., 2008, 130(41), 13552-13554.
[http://dx.doi.org/10.1021/ja8055358] [PMID: 18798626]
[48]
Charles, M.D.; Schultz, P.; Buchwald, S.L. Efficient pd-catalyzed amination of heteroaryl halides. Org. Lett., 2005, 7(18), 3965-3968.
[http://dx.doi.org/10.1021/ol0514754] [PMID: 16119943]
[49]
Brain, C.T.; Brunton, S.A. An intramolecular palladium-catalysed aryl amination reaction to produce benzimidazoles. Tetrahedron Lett., 2002, 43(10), 1893-1895.
[http://dx.doi.org/10.1016/S0040-4039(02)00132-6]
[50]
Hatakeyama, T.; Imayoshi, R.; Yoshimoto, Y.; Ghorai, S.K.; Jin, M.; Takaya, H.; Norisuye, K.; Sohrin, Y.; Nakamura, M. Iron-catalyzed aromatic amination for nonsymmetrical triarylamine synthesis. J. Am. Chem. Soc., 2012, 134(50), 20262-20265.
[http://dx.doi.org/10.1021/ja309845k] [PMID: 23181635]
[51]
Pan, H.J.; Ng, T.W.; Zhao, Y. Iron-catalyzed amination of alcohols assisted by Lewis acid. Chem. Commun. (Camb.), 2015, 51(59), 11907-11910.
[http://dx.doi.org/10.1039/C5CC03399C] [PMID: 26111504]
[52]
Legnani, L.; Prina Cerai, G.; Morandi, B. Direct and practical synthesis of primary anilines through iron-catalyzed C–H bond amination. ACS Catal., 2016, 6(12), 8162-8165.
[http://dx.doi.org/10.1021/acscatal.6b02576]
[53]
Paradine, S.M.; White, M.C. Iron-catalyzed intramolecular allylic C-H amination. J. Am. Chem. Soc., 2012, 134(4), 2036-2039.
[http://dx.doi.org/10.1021/ja211600g] [PMID: 22260649]
[54]
Das, S.K.; Roy, S.; Khatua, H.; Chattopadhyay, B. Iron-Catalyzed Amination of Strong Aliphatic C(sp 3)–H Bonds. J. Am. Chem. Soc., 2020, 142(38), 16211-16217.
[http://dx.doi.org/10.1021/jacs.0c07810] [PMID: 32893615]
[55]
Neetha, M.; Saranya, S.; Ann Harry, N.; Anilkumar, G. Recent advances and perspectives in the Copper-catalyzed Aminaton of aryles and heteroaryle halides. ChemistrySelect, 2020, 5(2), 736-753.
[http://dx.doi.org/10.1002/slct.201904436]
[56]
Miura, T.; Morimoto, M.; Murakami, M. Copper-catalyzed amination of silyl ketene acetals with N-chloroamines. Org. Lett., 2012, 14(20), 5214-5217.
[http://dx.doi.org/10.1021/ol302331k] [PMID: 23030410]
[57]
Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed amination of arylboronates with N,N-dialkylhydroxylamines. Angew. Chem. Int. Ed., 2012, 51(15), 3642-3645.
[http://dx.doi.org/10.1002/anie.201108773] [PMID: 22383299]
[58]
Elmkaddem, M.K.; Fischmeister, C.; Thomas, C.M.; Renaud, J.L. Efficient synthesis of aminopyridine derivatives by copper catalyzed amination reactions. Chem. Commun. (Camb.), 2010, 46(6), 925-927.
[http://dx.doi.org/10.1039/B916569J] [PMID: 20107652]
[59]
Kwong, F.Y.; Buchwald, S.L. Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines. Org. Lett., 2003, 5(6), 793-796.
[http://dx.doi.org/10.1021/ol0273396] [PMID: 12633073]
[60]
Du Bois, J.; Rhodium-Catalyzed, C-H. Rhodium-catalyzed C–H amination. An enabling method for chemical synthesis. Org. Process Res. Dev., 2011, 15(4), 758-762.
[http://dx.doi.org/10.1021/op200046v] [PMID: 21804756]
[61]
Fiori, K.W.; Espino, C.G.; Brodsky, B.H.; Du Bois, J. A mechanistic analysis of the Rh-catalyzed intramolecular C–H amination reaction. Tetrahedron, 2009, 65(16), 3042-3051.
[http://dx.doi.org/10.1016/j.tet.2008.11.073]
[62]
Park, S.H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. Mechanistic studies of the rhodium-catalyzed direct C-H amination reaction using azides as the nitrogen source. J. Am. Chem. Soc., 2014, 136(6), 2492-2502.
[http://dx.doi.org/10.1021/ja411072a] [PMID: 24450395]
[63]
Evans, P.A.; Robinson, J.E.; Nelson, J.D. Enantiospecific synthesis of allylamines via the regioselective rhodium-catalyzed allylic amination reaction. J. Am. Chem. Soc., 1999, 121(28), 6761-6762.
[http://dx.doi.org/10.1021/ja991089f]
[64]
Donaire, J.G.; Ernst, M.; Trapp, O.; Schaub, T. Direct synthesis of primary amines via ruthuenium-catalysed animation of ketones with ammonia and hydrogen. Adv. Synth. Catal., 2016, 358, 358-363.
[http://dx.doi.org/10.1002/adsc.201500968]
[65]
Yang, L.C.; Wang, Y.N.; Zhang, Y.; Zhao, Y. Acid-assisted ru-catalyzed enantioselective amination of 1,2-diols through borrowing hydrogen. ACS Catal., 2017, 7(1), 93-97.
[http://dx.doi.org/10.1021/acscatal.6b02959]
[66]
Zou, H.; Chen, J. Efficient and selective approach to biomass-based amine by reductive amination of furfural using Ru catalyst. Appl. Catal. B, 2022, 309, 121262.
[http://dx.doi.org/10.1016/j.apcatb.2022.121262]
[67]
Kim, H.; Shin, K.; Chang, S. Iridium-catalyzed C-H amination with anilines at room temperature: compatibility of iridacycles with external oxidants. J. Am. Chem. Soc., 2014, 136(16), 5904-5907.
[http://dx.doi.org/10.1021/ja502270y] [PMID: 24702587]
[68]
Ye, K.Y.; He, H.; Liu, W.B.; Dai, L.X.; Helmchen, G.; You, S.L. Iridium-catalyzed allylic vinylation and asymmetric allylic amination reactions with o-aminostyrenes. J. Am. Chem. Soc., 2011, 133(46), 19006-19014.
[http://dx.doi.org/10.1021/ja2092954] [PMID: 21995503]
[69]
Yang, Z.P.; Wu, Q.F.; You, S.L. Direct asymmetric dearomatization of pyridines and pyrazines by iridium-catalyzed allylic amination reactions. Angew. Chem. Int. Ed., 2014, 53(27), 6986-6989.
[http://dx.doi.org/10.1002/anie.201404286] [PMID: 24861469]
[70]
Marín, M.; Rama, R.J.; Nicasio, M.C. Ni-Catalyzed Amination Reactions: An Overview. Chem. Rec., 2016, 16(4), 1819-1832.
[http://dx.doi.org/10.1002/tcr.201500305] [PMID: 27265724]
[71]
Hie, L.; Ramgren, S.D.; Mesganaw, T.; Garg, N.K. Nickel-catalyzed amination of aryl sulfamates and carbamates using an air-stable precatalyst. Org. Lett., 2012, 14(16), 4182-4185.
[http://dx.doi.org/10.1021/ol301847m] [PMID: 22849697]
[72]
Srivastava, R.S.; Nicholas, K.M. Mechanistic Aspects of Molybdenum-Promoted Allylic Amination. J. Org. Chem., 1994, 59(18), 5365-5371.
[http://dx.doi.org/10.1021/jo00097a044]
[73]
Li, Z.; Capretto, D.A.; Rahaman, R.; He, C. Silver-catalyzed intermolecular amination of C--H groups. Angew. Chem. Int. Ed., 2007, 46(27), 5184-5186.
[http://dx.doi.org/10.1002/anie.200700760] [PMID: 17535005]
[74]
Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider, R.; Fort, Y. Efficient nickel-mediated intramolecular amination of aryl chlorides. Org. Lett., 2003, 5(13), 2311-2314.
[http://dx.doi.org/10.1021/ol034659w] [PMID: 12816436]
[75]
Bolliger, J.L.; Frech, C.M. Transition metal-free amination of aryl halides—A simple and reliable method for the efficient and high-yielding synthesis of N-arylated amines. Tetrahedron, 2009, 65(6), 1180-1187.
[http://dx.doi.org/10.1016/j.tet.2008.11.072]
[76]
Coeffard, V.; Moreau, X.; Thomassigny, C.; Greck, C. Transition-metal-free amination of aryl boronic acids and their derivatives. Angew. Chem. Int. Ed., 2013, 52(22), 5684-5686.
[http://dx.doi.org/10.1002/anie.201300382] [PMID: 23606445]
[77]
Grubbs, R.H. Realizing the promise of olefin metathesis. Adv. Synth. Catal., 2007, 349(1-2), 23-24.
[http://dx.doi.org/10.1002/adsc.200600621]
[78]
Teh, W.P.; Obenschain, D.C.; Black, B.M.; Michael, F.E. Catalytic Metal-free allylic C–H amination of terpenoids. J. Am. Chem. Soc., 2020, 142(39), 16716-16722.
[http://dx.doi.org/10.1021/jacs.0c06997] [PMID: 32909748]
[79]
Grubbs, R.H. Olefin metathesis. Tetrahedron, 2004, 60(34), 7117-7140.
[http://dx.doi.org/10.1016/j.tet.2004.05.124]
[80]
Grubbs, R.H.; Miller, S.J.; Fu, G.C. Ring-closing metathesis and related processes in organic synthesis. Acc. Chem. Res., 1995, 28(11), 446-452.
[http://dx.doi.org/10.1021/ar00059a002]
[81]
Noyori, R. Asymmetric catalysis: Science and opportunities (nobel lecture 2001). Adv. Synth. Catal., 2003, 345(12), 15-32.
[http://dx.doi.org/10.1002/adsc.200390002]
[82]
Shou, W.G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Ruthenium-catalyzed intramolecular amination reactions of aryl- and vinylazides. Organometallics, 2009, 28(24), 6847-6854.
[http://dx.doi.org/10.1021/om900275j]
[83]
Pan, S.; Wu, B.; Hu, J.; Xu, R.; Jiang, M.; Zeng, X.; Zhong, G. Palladium-catalyzed allylic substitution reaction of benzothiazolylacetamide with allylic alcohols in water. J. Org. Chem., 2019, 84(16), 10111-10119.
[http://dx.doi.org/10.1021/acs.joc.9b01313] [PMID: 31343177]
[84]
Nomura, N.; Tsurugi, K.; Yoshida, N.; Okada, M. Palladium-catalyzed allylic substitution reaction in polymer synthesis. Curr. Org. Synth., 2005, 2(1), 21-38.
[http://dx.doi.org/10.2174/1570179052996973]
[85]
Maas, G. Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds. Chem. Soc. Rev., 2004, 33(3), 183-190.
[http://dx.doi.org/10.1039/b309046a] [PMID: 15026823]
[86]
Naota, T.; Takaya, H.; Murahashi, S.I. Ruthenium catalyzed reactions for organic synthesis. Chem. Rev., 1998, 98(7), 2599-2660.
[http://dx.doi.org/10.1021/cr9403695] [PMID: 11848973]
[87]
Mizuno, S.; Tsuji, H.; Uozumi, Y.; Kawatsura, M. Synthesis of α-tertiary amines by the ruthenium-catalyzed regioselective allylic amination of tertiary allylic esters. Chem. Lett., 2020, 49(6), 645-647.
[http://dx.doi.org/10.1246/cl.200107]
[88]
Isobe, S.; Terasaki, S.; Hanakawa, T.; Mizuno, S.; Kawatsura, M. Ruthenium-catalyzed regioselective allylic amination of 2,3,3-trifluoroallylic carbonates. Org. Biomol. Chem., 2017, 15(14), 2938-2946.
[http://dx.doi.org/10.1039/C7OB00514H] [PMID: 28290580]
[89]
Mizuno, S.; Terasaki, S.; Shinozawa, T.; Kawatsura, M.; Regioselective, M. Regioselective construction of α,α-disubstituted allylic amines by the ruthenium-catalyzed allylic amination of tertiary allylic acetates. Org. Lett., 2017, 19(3), 504-507.
[http://dx.doi.org/10.1021/acs.orglett.6b03672] [PMID: 28094972]
[90]
Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Ruthenium-catalyzed regio- and enantioselective allylic amination of racemic 1-arylallyl esters. Org. Lett., 2014, 16(5), 1470-1473.
[http://dx.doi.org/10.1021/ol5002768] [PMID: 24524275]
[91]
Sahli, Z.; Sundararaju, B.; Achard, M.; Bruneau, C. Ruthenium-catalyzed reductive amination of allylic alcohols. Org. Lett., 2011, 13(15), 3964-3967.
[http://dx.doi.org/10.1021/ol201485e] [PMID: 21699264]
[92]
Kawatsura, M.; Ata, F.; Hirakawa, T.; Hayase, S.; Itoh, T. Ruthenium-catalyzed linear selective allylic aminations of monosubstituted allyl acetates. Tetrahedron Lett., 2008, 49(33), 4873-4875.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.002]
[93]
Haak, E. Ruthenium-catalyzed enaminoketone formation from propargyl alcohols. Synlett, 2006, 2006(12), 1847-1848.
[http://dx.doi.org/10.1055/s-2006-947357]
[94]
Haak, E. Ruthenium complexes of electronically coupled cyclopentadienone ligands – catalysts for transformations of propargyl alcohols. Eur. J. Org. Chem., 2007, 2007(17), 2815-2824.
[http://dx.doi.org/10.1002/ejoc.200700064]
[95]
Fernández, I.; Hermatschweiler, R.; Pregosin, P.S.; Albinati, A.; Rizzato, S. Synthesis, x-ray studies, and catalytic allylic amination reactions with ruthenium(IV) allyl carbonate complexes. Organometallics, 2006, 25(2), 323-330.
[http://dx.doi.org/10.1021/om050749o]
[96]
Zhang, X.; Yang, Z.P.; Liu, C.; You, S.L. Ru-catalyzed intermolecular dearomatization reaction of indoles with allylic alcohols. Chem. Sci. (Camb.), 2013, 4(8), 3239-3243.
[http://dx.doi.org/10.1039/c3sc51313k]
[97]
Nishioka, Y.; Uchida, T.; Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C-H bond amination. Angew. Chem. Int. Ed., 2013, 52(6), 1739-1742.
[http://dx.doi.org/10.1002/anie.201208906] [PMID: 23307424]
[98]
Intrieri, D.; Caselli, A.; Ragaini, F.; Macchi, P.; Casati, N.; Gallo, E. Insights into the mechanism of the ruthenium–porphyrin‐catalysed allylic amination of olefins by aryl azides. Eur. J. Inorg. Chem., 2012, 2012(3), 569-580.
[http://dx.doi.org/10.1002/ejic.201100763]
[99]
Fantauzzi, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Casati, N.; Macchi, P.; Cenini, S. The key intermediate in the amination of saturated C–H bonds: synthesis, X-ray characterization and catalytic activity of Ru(TPP)(NAr)2 (Ar = 3,5-(CF3)2C6H3). Chem. Commun. (Camb.), 2009, (26), 3952-3954.
[http://dx.doi.org/10.1039/b903238j] [PMID: 19662263]
[100]
Manca, G.; Gallo, E.; Intrieri, D.; Mealli, C. DFT Mechanistic proposal of the ruthenium porphyrin-catalyzed allylic amination by organic azides. ACS Catal., 2014, 4(3), 823-832.
[http://dx.doi.org/10.1021/cs4010375]
[101]
Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. Allylic amination of cyclohexene catalyzed by ruthenium complexes. A new reaction involving an inter molecular C−H functionalization. J. Am. Chem. Soc., 1996, 118(47), 11964-11965.
[http://dx.doi.org/10.1021/ja9541589]
[102]
Ragaini, F.; Cenini, S.; Tollari, S.; Tummolillo, G.; Beltrami, R. Allylic amination of cyclohexene catalyzed by ruthenium complexes. A new reaction involving an intermolecular C−H functionalization. Organometallics, 1999, 18, 928-942.
[http://dx.doi.org/10.1021/om980843n]
[103]
Harvey, M.E.; Musaev, D.G.; Bois, J.D. Iron(II) bromide-catalyzed intramolecular C–H bond amination [1,2]-shift tandem reactions of aryl azides. J. Am. Chem. Soc., 2011, 113, 17207-17216.
[http://dx.doi.org/10.1021/ja203576p] [PMID: 21981699]
[104]
Milczek, E.; Boudet, N.; Blakey, S. Enantioselective C-H amination using cationic ruthenium(II)-pybox catalysts. Angew. Chem. Int. Ed., 2008, 47(36), 6825-6828.
[http://dx.doi.org/10.1002/anie.200801445] [PMID: 18642266]
[105]
Xing, Q.; Chan, C.M.; Yeung, Y.W.; Yu, W.Y. Ruthenium(II)-catalyzed enantioselective γ-lactams formation by intramolecular C–H amidation of 1,4,2-dioxazol-5-ones. J. Am. Chem. Soc., 2019, 141(9), 3849-3853.
[http://dx.doi.org/10.1021/jacs.9b00535] [PMID: 30785737]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy