Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Quantitative Applications of ATR-FTIR Spectroscopy with Chemometrics for the Estimation of Amikacin in Amikacin Sulphate Injections

Author(s): Chow Jie Chen, Bontha Venkata Subrahmanya Lokesh* and Gabriel Akyirem Akowuah

Volume 20, Issue 3, 2024

Published on: 06 February, 2024

Page: [201 - 208] Pages: 8

DOI: 10.2174/0115734110278516240129174949

Abstract

Background: Amikacin belongs to the class of aminoglycoside antibiotics used in the treatment of gram-negative bacterial infections. It is resistant to the aminoglycosides modifying enzymes, making it a clinically effective drug in multidrug-resistant infections.

Methods: In this study, a simple Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy was used for the quantification of amikacin in amikacin sulphate injection. The infrared spectra were generated in the spectral range of 4000–667 cm-1. The calibration curve was computed through TQ Analyst Pro edition software, and the partial least square regression analysis found the linearity in the range of 10-60% w/w.

Results: The best calibration results were obtained in the spectral region from 1040 to 1020 cm-1 with a correlation coefficient (r2) of 1.000. The residual mean standard error (RMSEC) value was 0.00235. The percent relative standard deviation (%RSD) values for intra-day and inter-day precision were less than 8.0. The percent relative error (%RE) values were calculated and found in between the range of 0.52 to 5.60. The percent recovery of the amikacin estimation was 113.09 ± 4.27(n=3).

Conclusion: This validated method is considered a green method, which is suitable for the routine analysis of amikacin in amikacin sulphate injections.

Keywords: Aminoglycoside, injections, attenuated total reflectance, fourier transform infrared spectroscopy, PLS, amikacin.

Graphical Abstract
[1]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), a027029.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[2]
Glinka, M.; Wojnowski, W.; Wasik, A. Determination of aminoglycoside antibiotics: Current status and future trends. Trends Analyt. Chem., 2020, 131, 116034.
[http://dx.doi.org/10.1016/j.trac.2020.116034]
[3]
Niederman, M.S.; Alder, J.; Bassetti, M.; Boateng, F.; Cao, B.; Corkery, K.; Dhand, R.; Kaye, K.S.; Lawatscheck, R.; McLeroth, P.; Nicolau, D.P.; Wang, C.; Wood, G.C.; Wunderink, R.G.; Chastre, J. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with Gram-negative pneumonia (INHALE): A double-blind, randomised, placebo-controlled, phase 3, superiority trial. Lancet Infect. Dis., 2020, 20(3), 330-340.
[http://dx.doi.org/10.1016/S1473-3099(19)30574-2] [PMID: 31866328]
[4]
Dilip, S.; Bendapudi, P.; Bhaskaran, R.; Roshni, P.R. Assessment of amikacin induced ototoxicity in a neonatal ICU setup-An experience from tertiary care Teaching Hospital in South India. Res. J. Pharm. Technol., 2020, 13(3), 1467-1473.
[http://dx.doi.org/10.5958/0974-360X.2020.00268.1]
[5]
Afrah, T.H.; Hadeel, R.F.; Wafa, S.A. The protective effect of omega3 against amikacin induced nephrotoxicity in rats. Sys. Rev. Pharm, 2020, 11(9), 110-117.
[http://dx.doi.org/10.31838/srp.2020.9.19]
[6]
Siebinga, H.; Robb, F.; Thomson, A.H. Population pharmacokinetic evaluation and optimization of amikacin dosage regimens for the management of mycobacterial infections. J. Antimicrob. Chemother., 2020, 75(10), 2933-2940.
[http://dx.doi.org/10.1093/jac/dkaa277] [PMID: 32747960]
[7]
Stankowicz, M.S.; Ibrahim, J.; Brown, D.L. Once-daily aminoglycoside dosing: An update on current literature. Am. J. Health Syst. Pharm., 2015, 72(16), 1357-1364.
[http://dx.doi.org/10.2146/ajhp140564] [PMID: 26246292]
[8]
Pagkalis, S.; Mantadakis, E.; Mavros, M.N.; Ammari, C.; Falagas, M.E. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs, 2011, 71(17), 2277-2294.
[http://dx.doi.org/10.2165/11597020-000000000-00000] [PMID: 22085385]
[9]
Pérez-Blanco, J.S.; Sáez Fernández, E.M.; Calvo, M.V.; Lanao, J.M.; Martín-Suárez, A. Evaluation of current amikacin dosing recommendations and development of an interactive nomogram: The role of albumin. Pharmaceutics, 2021, 13(2), 264.
[http://dx.doi.org/10.3390/pharmaceutics13020264] [PMID: 33672057]
[10]
Yao, L.; Zhang, J.; Chen, B.; Cai, M.; Feng, D.; Wang, Q.; Wang, X.; Sun, J.; Zheng, Y.; Wang, G.; Zhou, F. Mechanisms and pharmacokinetic/pharmacodynamic profiles underlying the low nephrotoxicity and ototoxicity of etimicin. Acta Pharmacol. Sin., 2020, 41(6), 866-878.
[http://dx.doi.org/10.1038/s41401-019-0342-5] [PMID: 31937930]
[11]
Modongo, C.; Pasipanodya, J.G.; Zetola, N.M.; Williams, S.M.; Sirugo, G.; Gumbo, T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob. Agents Chemother., 2015, 59(10), 6337-6343.
[http://dx.doi.org/10.1128/AAC.01050-15] [PMID: 26248372]
[12]
Amikacin monograph for professionals. Available from: https://www.drugs.com/monograph/amikacin.html
[13]
Chan, K.; Wang, W.; Ledesma, K.R.; Yin, T.; Tam, V.H. A robust LC–MS/MS method for amikacin: Application to cellular uptake and pharmacokinetic studies. Bioanalysis, 2020, 12(7), 445-454.
[http://dx.doi.org/10.4155/bio-2020-0007] [PMID: 32343148]
[14]
Raut, A.; Sharma, D.; Suvarna, V. A status update on pharmaceutical analytical methods of aminoglycoside antibiotic. Amikacin. Crit. Rev. Anal. Chem, 2022, 52(2), 375-391.
[http://dx.doi.org/10.1080/10408347.2020.1803042]
[15]
Lou, X.; Tang, Y.; Fang, C.; Kong, C.; Yu, H.; Shi, Y.; Huang, D.; Guo, Y.; Xiao, D. Simultaneous determination of ten aminoglycoside antibiotics in aquatic feeds by high‐performance liquid chromatography quadrupole‐orbitrap mass spectrometry with pass‐through cleanup. Chirality, 2020, 32(3), 324-333.
[http://dx.doi.org/10.1002/chir.23159] [PMID: 31877236]
[16]
Qiu, J.; Liu, Q.; Zhang, M.; Li, X.; Zhang, J.; Xiong, R.; He, L. Simultaneous determination of aminoglycoside residues in environmental water matrices by lyophilization combined with liquid chromatography–tandem mass spectrometry (LC- MS/MS). Anal. Lett., 2020, 53(14), 2235-2251.
[http://dx.doi.org/10.1080/00032719.2020.1734606]
[17]
Savoy, M.C.; Woo, P.M.; Ulrich, P.; Tarres, A.; Mottier, P.; Desmarchelier, A. Determination of 14 aminoglycosides by LC-MS/MS using molecularly imprinted polymer solid phase extraction for clean-up. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2018, 35(4), 675-686.
[http://dx.doi.org/10.1080/19440049.2018.1433332] [PMID: 29451850]
[18]
Díez, C.; Guillarme, D.; Staub Spörri, A.; Cognard, E.; Ortelli, D.; Edder, P.; Rudaz, S. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta, 2015, 882, 127-139.
[http://dx.doi.org/10.1016/j.aca.2015.03.050] [PMID: 26043099]
[19]
Kumar, P.; Rubies, A.; Companyó, R.; Centrich, F. Hydrophilic interaction chromatography for the analysis of aminoglycosides. J. Sep. Sci., 2012, 35(4), 498-504.
[http://dx.doi.org/10.1002/jssc.201100860] [PMID: 22282410]
[20]
International conference on harmonization (ICH). Guideline Q2(R1). In: Validation of Analytica Procedures: Text and Methodology; ICH: Geneva, 2005.
[21]
Glavanović, S.; Glavanović, M.; Tomišić, V. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 157, 258-264.
[http://dx.doi.org/10.1016/j.saa.2015.12.020] [PMID: 26774813]
[22]
Kuo, P.C.; Li, Y.C.; Yang, M.L.; Tzen, J.T.C. A feasible UHPLC‐MS/MS method for concurrent quantification of 10 bioactive principles in Aquilaria leaf tea by the multiple reaction monitoring analytical mode. Phytochem. Anal., 2020, 31(5), 583-593.
[http://dx.doi.org/10.1002/pca.2923] [PMID: 31990133]
[23]
Ali, S.; Akowuah, A.G.; Omotayo, F.; Ahmad, M.; Shaik, I.K. Determination of acarbose in tablets by attenuated total reflectance Fourier transform infrared spectroscopy. Arch. Ind. Biotechnol., 2016, 1(1), 20-26.
[24]
Sawsan, I.; Khalivula, S.I.; Akowuah, A.G. Determination of alendronate sodium in tablets by attenuated total reflectance fourier transform infrared spectroscopy. Curr. Bioact. Compd., 2016, 13(1), 71-77.
[http://dx.doi.org/10.2174/1573407212999160506112738]
[25]
Westfall, A.; Sigurdson, G.T.; Rodriguez-Saona, L.E.; Giusti, M.M. Ex vivo and in vivo assessment of the penetration of topically applied anthocyanins utilizing ATR-FTIR/PLS regression models and HPLC-PDA-MS. Antioxidants, 2020, 9(6), 486.
[http://dx.doi.org/10.3390/antiox9060486] [PMID: 32503271]
[26]
Andrade, G.C.; Medeiros Coelho, C.M.; Uarrota, V.G. Modelling the vigour of maize seeds submitted to artificial accelerated ageing based on ATR-FTIR data and chemometric tools (PCA, HCA and PLS-DA). Heliyon, 2020, 6(2), e03477.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03477] [PMID: 32140593]
[27]
Amit, J.; Kumari, S.; Dhaulaniya, A.S.; Balan, B.; Singh, D.K. Application of ATR-FTIR spectroscopy along with regression modelling for the detection of adulteration of virgin coconut oil with paraffin oil. Lebensm. Wiss. Technol., 2019, 108754.
[28]
Jamwal, R.; Amit; Kumari, S.; Balan, B.; Dhaulaniya, A.S.; Kelly, S.; Cannavan, A.; Singh, D.K Attenuated total reflectance–fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometrics for rapid detection of argemone oil adulteration in mustard oil. Lebensm. Wiss. Technol., 2020, 120, 108945.
[http://dx.doi.org/10.1016/j.lwt.2019.108945]
[29]
Balan, B.; Dhaulaniya, A.S.; Jamwal, R.; Amit; Sodhi, K.K.; Kelly, S.; Cannavan, A.; Singh, D.K. Application of attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy coupled with chemometrics for detection and quantification of formalin in cow milk. Vib. Spectrosc., 2020, 107, 103033.
[http://dx.doi.org/10.1016/j.vibspec.2020.103033]
[30]
Mansoldo, F.R.P.; Cardoso, V.S.; Neves Junior, A.; Cedrola, S.M.L.; Maricato, V.; Rosa, M.S.S.; Vermelho, A.B. Quantification of schizophyllan directly from the fermented broth by ATR-FTIR and PLS regression. Anal. Methods, 2020, 12(45), 5468-5475.
[http://dx.doi.org/10.1039/D0AY01585G] [PMID: 33141124]
[31]
Tarhan, İ. A comparative study of ATR-FTIR, UV–visible and fluorescence spectroscopy combined with chemometrics for quantification of squalene in extra virgin olive oils. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 241, 118714.
[http://dx.doi.org/10.1016/j.saa.2020.118714] [PMID: 32717649]
[32]
Custódio, M.; Magalhães, L.; Arantes, L.; Braga, J. Identification of synthetic drugs on seized blotter papers using ATR-FTIR and PLS- DA: routine application in a forensic laboratory. J. Braz. Chem. Soc., 2021, 32(3), 513-522.
[http://dx.doi.org/10.21577/0103-5053.20200205]
[33]
Eid, S.M.; Soliman, S.S.; Elghobashy, M.R.; Abdalla, O.M. ATR-FTIR coupled with chemometrics for quantification of vildagliptin and metformin in pharmaceutical combinations having diverged concentration ranges. Vib. Spectrosc., 2020, 106, 102995.
[http://dx.doi.org/10.1016/j.vibspec.2019.102995]
[34]
Ovalles, J.F.; Gallignani, M.; Brunetto, M.R.; Rondón, R.A.; Ayala, C. Reagent-free determination of amikacin content in amikacin sulfate injections by FTIR derivative spectroscopy in a continuous flow system. J. Pharm. Anal., 2014, 4(2), 125-131.
[http://dx.doi.org/10.1016/j.jpha.2013.08.001] [PMID: 29403874]
[35]
Boyer, C.; Brégère, B.; Crouchet, S.; Gaudin, K.; Dubost, J.P. Direct determination of niflumic acid in a pharmaceutical gel by ATR/FTIR spectroscopy and PLS calibration. J. Pharm. Biomed. Anal., 2006, 40(2), 433-437.
[http://dx.doi.org/10.1016/j.jpba.2005.07.018] [PMID: 16122895]
[36]
Peng, J.; Peng, S.; Xie, Q.; Wei, J. Baseline correction combined partial least squares algorithm and its application in on-line Fourier transform infrared quantitative analysis. Anal. Chim. Acta, 2011, 690(2), 162-168.
[http://dx.doi.org/10.1016/j.aca.2011.02.001] [PMID: 21435471]
[37]
Gontijo, L.C.; Guimarães, E.; Mitsutake, H.; Santana, F.B.; Santos, D.Q.; Borges Neto, W. Development and validation of PLS models for quantification of biodiesels content from waste frying oil in diesel by HATR-MIR. Virtual Chem. Mag., 2014, 6(5), 1517-1528.
[http://dx.doi.org/10.5935/1984-6835.20140098]
[38]
Yi, Y.X.; Subrahmanya Lokesh, B.V.; Akowuah, G.A. ATR- FTIR spectroscopy methods for determination of aminoglycoside antibiotics in ophthalmic and parenteral preparations with full partial least squares algorithm. Curr. Trends Biotechnol. Pharm., 2020, 14(5), 38-54.
[http://dx.doi.org/10.5530/ctbp.2020.4s.5]
[39]
AOAC Guidelines for Single Laboratory Validation of Chemical Method for Dietary Supplements and Botanical; Association of Official Analytical Chemists: Arlington, 2002.
[40]
Bisht, S.S.; Chandra, G.; Pandey, K.K. Simple and rapid FTIR spectral data and chemometric analysis based method for evaluation of the quality of Indian Sandalwood oil. J. Essent. Oil Res., 2021, 33(4), 376-384.
[http://dx.doi.org/10.1080/10412905.2021.1895335]
[41]
Bisht, S.S.; Chandra, G.; Ravindra, M.; Kumar, R. Evaluation of chemical and physical properties of commercial sandalwood essential oils and their comparison with essential oil extracted from Santalum album L. J. Essent. Oil-Bear. Plants, 2020, 23(2), 345-355.
[http://dx.doi.org/10.1080/0972060X.2020.1755374]

© 2024 Bentham Science Publishers | Privacy Policy