Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Targeting the AKT/mTOR/p70S6K Pathway for Oligodendrocyte Differentiation and Myelin Regeneration in Neurological Disorders

Author(s): Chen Ge and Changwei Li*

Volume 20, Issue 4, 2023

Published on: 04 October, 2023

Page: [453 - 463] Pages: 11

DOI: 10.2174/0115672026274954230919070115

Price: $65

Abstract

Background: The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored.

Objective: This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro.

Methods: The isolation, induction and characterization of rat primary neuronal stem cells, OPCs and oligodendrocytes were investigated with immunofluorescence and RT-qPCR. Then, the role of AKT/mTOR/p70S6K signaling was explored using western blotting and immunofluorescence, the effect on myelination was examined with OPC-dorsal root ganglion (DRG) neurons co-culture, and the influence of M1/M2 polarization status of microglia on myelin formation was also observed by adding M1/M2 supernatants into OPC-DRG neurons co-culture.

Results: Activation of the AKT/mTOR/p70S6K pathway elevated the expression of oligodendrocyte differentiation markers, including MBP, PLP and MOG, which also promoted the colocalization of MBP and NFH in OPC-DRG neurons co-culture. More interestingly, stimulation of the AKT/mTOR/p70S6K pathway facilitated M2 polarization of rat microglia. M2 polarization of microglia enhanced OPC differentiation to oligodendrocytes and myelin formation.

Conclusion: Our findings highlight the potential of targeting the AKT/mTOR/p70S6K pathway in promoting oligodendrocyte differentiation and myelin regeneration in neurological disorders such as SCI.

Keywords: AKT/mTOR/p70S6K pathway, oligodendrocyte, M2 polarization, microglia, myelin formation, neurological disorders.

[1]
Clayton BLL, Tesar PJ. Oligodendrocyte progenitor cell fate and function in development and disease. Curr Opin Cell Biol 2021; 73: 35-40.
[http://dx.doi.org/10.1016/j.ceb.2021.05.003] [PMID: 34153742]
[2]
Barateiro A, Brites D, Fernandes A. Oligodendrocyte development and myelination in neurodevelopment: Molecular mechanisms in health and disease. Curr Pharm Des 2016; 22(6): 656-79.
[http://dx.doi.org/10.2174/1381612822666151204000636] [PMID: 26635271]
[3]
Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in development, myelin generation and beyond. Cells 2019; 8(11): 1424.
[http://dx.doi.org/10.3390/cells8111424] [PMID: 31726662]
[4]
Tiane A, Schepers M, Rombaut B. et al. From OPC to oligodendrocyte: An epigenetic journey. Cells 2019; 8(10): 1236.
[http://dx.doi.org/10.3390/cells8101236] [PMID: 31614602]
[5]
Almad A, Sahinkaya FR, McTigue DM. Oligodendrocyte fate after spinal cord injury. Neurotherapeutics 2011; 8(2): 262-73.
[http://dx.doi.org/10.1007/s13311-011-0033-5] [PMID: 21404073]
[6]
Garton T, Gill AJ, Calabresi PA. Distinct mechanisms of oligodendrocyte injury inform therapeutic interventions in multiple sclerosis. Brain 2022; 145(12): 4151-3.
[http://dx.doi.org/10.1093/brain/awac406] [PMID: 36325693]
[7]
Gaesser JM, Fyffe-Maricich SL. Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Experi Neurol 2016; 283(Pt B): 501-11.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.008]
[8]
Xu Y, Gao YW, Yang Y. SC79 protects dopaminergic neurons from oxidative stress. Oncotarget 2018; 9(16): 12639-48.
[http://dx.doi.org/10.18632/oncotarget.23538] [PMID: 29560097]
[9]
Chen Y, Zhou X. Research progress of mTOR inhibitors. Eur J Med Chem 2020; 208: 112820.
[http://dx.doi.org/10.1016/j.ejmech.2020.112820] [PMID: 32966896]
[10]
Ge C, Liu D, Sun Y. The promotive effect of activation of the Akt/mTOR/p70S6K signaling pathway in oligodendrocytes on nerve myelin regeneration in rats with spinal cord injury. Br J Neurosurg 2020; 1-9.
[http://dx.doi.org/10.1080/02688697.2020.1862056] [PMID: 33345640]
[11]
Yin J, Valin KL, Dixon ML, Leavenworth JW. The role of microglia and macrophages in CNS homeostasis, autoimmunity, and cancer. J Immunol Res 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/5150678] [PMID: 29410971]
[12]
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[13]
Guo S, Wang H, Yin Y. Microglia polarization From M1 to M2 in neurodegenerative diseases. Front Aging Neurosci 2022; 14: 815347.
[http://dx.doi.org/10.3389/fnagi.2022.815347] [PMID: 35250543]
[14]
Li Y, Liu Z, Song Y. et al. M2 microglia-derived extracellular vesicles promote white matter repair and functional recovery via miR-23a-5p after cerebral ischemia in mice. Theranostics 2022; 12(7): 3553-73.
[http://dx.doi.org/10.7150/thno.68895] [PMID: 35547763]
[15]
Choi JY, Kim JY, Kim JY, Park J, Lee WT, Lee JE. M2 phenotype microglia-derived cytokine stimulates proliferation and neuronal differentiation of endogenous stem cells in ischemic brain. Exp Neurobiol 2017; 26(1): 33-41.
[http://dx.doi.org/10.5607/en.2017.26.1.33] [PMID: 28243165]
[16]
Wang P, He Y, Li D. et al. Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. J Neuroinflammation 2016; 13(1): 192.
[http://dx.doi.org/10.1186/s12974-016-0660-1] [PMID: 27549161]
[17]
Redell JB, Maynard ME, Underwood EL, Vita SM, Dash PK, Kobori N. Traumatic brain injury and hippocampal neurogenesis: Functional implications. Exp Neurol 2020; 331: 113372.
[http://dx.doi.org/10.1016/j.expneurol.2020.113372] [PMID: 32504636]
[18]
Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity. Nat Rev Neurosci 2009; 10(1): 9-22.
[http://dx.doi.org/10.1038/nrn2495] [PMID: 19096367]
[19]
All AH, Bazley FA, Gupta S. et al. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. PLoS One 2012; 7(10): e47645.
[http://dx.doi.org/10.1371/journal.pone.0047645] [PMID: 23091637]
[20]
Yu Y, Chen Y, Kim B. et al. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 2013; 152(1-2): 248-61.
[http://dx.doi.org/10.1016/j.cell.2012.12.006] [PMID: 23332759]
[21]
Baer AS, Syed YA, Kang SU. et al. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 2009; 132(2): 465-81.
[http://dx.doi.org/10.1093/brain/awn334] [PMID: 19208690]
[22]
Guardiola-Diaz HM, Ishii A, Bansal R. Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. Glia 2012; 60(3): 476-86.
[http://dx.doi.org/10.1002/glia.22281] [PMID: 22144101]
[23]
Brennan FH, Li Y, Wang C. et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 2022; 13(1): 4096.
[http://dx.doi.org/10.1038/s41467-022-31797-0] [PMID: 35835751]
[24]
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009; 29(43): 13435-44.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-09.2009] [PMID: 19864556]
[25]
Yune TY, Lee JY, Jung GY. et al. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 2007; 27(29): 7751-61.
[http://dx.doi.org/10.1523/JNEUROSCI.1661-07.2007] [PMID: 17634369]
[26]
Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA. Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 2002; 22(10): 3921-8.
[http://dx.doi.org/10.1523/JNEUROSCI.22-10-03921.2002] [PMID: 12019311]
[27]
Miron VE, Boyd A, Zhao JW. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013; 16(9): 1211-8.
[http://dx.doi.org/10.1038/nn.3469] [PMID: 23872599]
[28]
Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 2014; 34(6): 2231-43.
[http://dx.doi.org/10.1523/JNEUROSCI.1619-13.2014] [PMID: 24501362]
[29]
Althaus HH, Klöppner S, Klopfleisch S, Schmitz M. Oligodendroglial cells and neurotrophins: A polyphonic cantata in major and minor. J Mol Neurosci 2008; 35(1): 65-79.
[http://dx.doi.org/10.1007/s12031-008-9053-y]
[30]
Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006; 80(6): 1298-307.
[http://dx.doi.org/10.1189/jlb.0406249] [PMID: 16905575]
[31]
Olah M, Amor S, Brouwer N. et al. Identification of a microglia phenotype supportive of remyelination. Glia 2012; 60(2): 306-21.
[http://dx.doi.org/10.1002/glia.21266] [PMID: 22072381]
[32]
Pang Y, Fan LW, Tien LT. et al. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 2013; 3(5): 503-14.
[http://dx.doi.org/10.1002/brb3.152] [PMID: 24392271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy