Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Commentary

Supported Ionic Liquid Phase for Biocatalysis: The Current Applications, Synthesis and Prospects

Author(s): Anna Wolny and Anna Chrobok*

Volume 27, Issue 13, 2023

Published on: 10 October, 2023

Page: [1119 - 1122] Pages: 4

DOI: 10.2174/0113852728269911231003072822

Abstract

In this work, the potential of supported ionic liquids-based biocatalysts was presented. Efforts are underway to identify suitable carrier matrices for biocatalytic reactions, considering the crucial role of surface morphology. Factors such as mechanical and thermal properties, surface area, pore volume, density, and functionalization potential are being carefully considered during selection. The correlation between carrier, enzyme, and il structures highlights the importance of constructing biocatalysts with exceptional catalytic activity. Enzymes immobilized on silp/sillp carriers generally exhibit enhanced activity compared to the native protein. Silp-type carriers improve process efficiency, enable easy separation and recycling of biocatalysts, and prolong the protein's lifespan.

Keywords: Biocatalysis, SILP/SILLP, implementation of ionic liquids (ILs), CALB, morphology, catalylic activity.

Graphical Abstract
[1]
Thore, S.; Tarverdyan, R. Measuring Sustainable Development Goals Performance; Elsevier: Amsterdam, The Netherlands, 2021.
[2]
Sheldon, R.A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH Verlag GmbH: Berlin, Germany, 2020.
[3]
Sheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev., 2018, 118(2), 801-838.
[http://dx.doi.org/10.1021/acs.chemrev.7b00203] [PMID: 28876904]
[4]
Fernandez-Lafuente, R. Enzyme immobilization and its applications. Molecules, 2019, 24(24), 4619.
[http://dx.doi.org/10.3390/molecules24244619] [PMID: 31861120]
[5]
Domínguez de María, P. Ionic Liquids in Biotransformations and Organocatalysis: Solvents and Beyond; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
[http://dx.doi.org/10.1002/9781118158753]
[6]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[7]
Potdar, M.; Kelso, G.; Schwarz, L.; Zhang, C.; Hearn, M. Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules, 2015, 20(9), 16788-16816.
[http://dx.doi.org/10.3390/molecules200916788] [PMID: 26389873]
[8]
Wolny, A.; Chrobok, A. Ionic liquids for development of heterogeneous catalysts based on nanomaterials for biocatalysis. Nanomaterials , 2021, 11(8), 2030.
[http://dx.doi.org/10.3390/nano11082030] [PMID: 34443861]
[9]
Fehrmann, R.; Riisager, A.; Haumann, M. Supported Ionic Liquids: Fundamental and Applications, 1st; Wiley-VCH Verlag GmbH: Berlin, Germany, 2014.
[http://dx.doi.org/10.1002/9783527654789]
[10]
Lozano, P.; Diego, T.; Carrié, D.; Vaultier, M.; Iborra, J.L. Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem. Commun. , 2002, 7(7), 692-693.
[http://dx.doi.org/10.1039/b200055e] [PMID: 12119678]
[11]
García-Verdugo, E.; Altava, B.; Burguete, M.I.; Lozano, P.; Luis, S.V. Ionic liquids and continuous flow processes: A good marriage to design sustainable processes. Green Chem., 2015, 17(5), 2693-2713.
[http://dx.doi.org/10.1039/C4GC02388A]
[12]
Lozano, P.; Nieto, S.; Serrano, J.; Perez, J.; Sanchez-Gomez, G.; García-Verdugo, E.; Luis, S. Flow biocatalytic processes in ionic liquids and supercritical fluids. Mini Rev. Org. Chem., 2017, 14(1), 65-74.
[http://dx.doi.org/10.2174/1570193X13666161103145723]
[13]
Barbosa, M.S.; Santos, A.J.; Carvalho, N.B.; Figueiredo, R.T.; Pereira, M.M.; Lima, Á.S.; Freire, M.G.; Cabrera-Padilla, R.Y.; Soares, C.M.F. Enhanced activity of immobilized lipase by phosphonium-based ionic liquids used in the supports preparation and immobilization process. ACS Sustain. Chem.& Eng., 2019, 7(18), 15648-15659.
[http://dx.doi.org/10.1021/acssuschemeng.9b03741]
[14]
Szelwicka, A.; Erfurt, K.; Jurczyk, S.; Boncel, S.; Chrobok, A. Outperformance in acrylation: Supported D-glucose-based ionic liquid phase on MWCNTs for immobilized lipase B from Candida antarctica as catalytic system. Materials , 2021, 14(11), 3090.
[http://dx.doi.org/10.3390/ma14113090] [PMID: 34200059]
[15]
Sandig, B.; Michalek, L.; Vlahovic, S.; Antonovici, M.; Hauer, B.; Buchmeiser, M.R. A Monolithic hybrid cellulose-2.5- Acetate/polymer bioreactor for biocatalysis under continuous liquid-liquid conditions using a supported ionic liquid phase. Chemistry, 2015, 21(44), 15835-15842.
[http://dx.doi.org/10.1002/chem.201501618] [PMID: 26493884]
[16]
Wolny, A.; Siewniak, A.; Zdarta, J.; Ciesielczyk, F.; Latos, P.; Jurczyk, S.; Nghiem, L.D.; Jesionowski, T.; Chrobok, A. Supported ionic liquid phase facilitated catalysis with lipase from Aspergillus oryzae for enhance enantiomeric resolution of racemic ibuprofen. Environ. Technol. Innov., 2022, 28, 102936-102947.
[http://dx.doi.org/10.1016/j.eti.2022.102936]
[17]
Szelwicka, A.; Wolny, A.; Grymel, M.; Jurczyk, S.; Boncel, S.; Chrobok, A. Chemo-enzymatic Baeyer–Villiger oxidation facilitated with lipases immobilized in the supported ionic liquid phase. Materials , 2021, 14(13), 3443.
[http://dx.doi.org/10.3390/ma14133443] [PMID: 34206178]
[18]
Lozano, P.; García-Verdugo, E.; Bernal, J.M.; Izquierdo, D.F.; Burguete, M.I.; Sánchez-Gómez, G.; Luis, S.V. Immobilised lipase on structured supports containing covalently attached ionic liquids for the continuous synthesis of biodiesel in scCO2. ChemSusChem, 2012, 5(4), 790-798.
[http://dx.doi.org/10.1002/cssc.201100692] [PMID: 22383391]
[19]
Zhong, N.; Li, Y.; Cai, C.; Gao, Y.; Liu, N.; Liu, G.; Tan, W.; Zeng, Y. Enhancing the catalytic performance of Candida antarctica lipase B by immobilization onto the ionic liquids modified SBA-15. Eur. J. Lipid Sci. Technol., 2018, 120(4), 1700357.
[http://dx.doi.org/10.1002/ejlt.201700357]
[20]
Xie, W.; Zang, X. Lipase immobilized on ionic liquid-functionalized magnetic silica composites as a magnetic biocatalyst for production of trans -free plastic fats. Food Chem., 2018, 257, 15-22.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.010] [PMID: 29622191]
[21]
Izquierdo, D.F.; Bernal, J.M.; Burguete, M.I.; García-Verdugo, E.; Lozano, P.; Luis, S.V. An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilised on supported ionic liquid-like phases (SILLPs). RSC Adv., 2013, 3(32), 13123.
[http://dx.doi.org/10.1039/c3ra42467g]
[22]
Heba, M.; Wolny, A.; Kastelik-Hryniewiecka, A.; Stradomska, D.; Jurczyk, S.; Chrobok, A. Kuźnik, N. Green dynamic kinetic resolution—stereoselective acylation of secondary alcohols by enzyme-assisted ruthenium complexes. Catalysts, 2022, 12(11), 1395.
[http://dx.doi.org/10.3390/catal12111395]
[23]
Sandig, B.; Buchmeiser, M.R. Highly productive and enantioselective enzyme catalysis under continuous supported liquid-liquid conditions using a hybrid monolithic bioreactor. ChemSusChem, 2016, 9(20), 2917-2921.
[http://dx.doi.org/10.1002/cssc.201600994] [PMID: 27650312]
[24]
Lee, C.; Sandig, B.; Buchmeiser, M.R.; Haumann, M. Supported ionic liquid phase (SILP) facilitated gas-phase enzyme catalysis – CALB catalyzed transesterification of vinyl propionate. Catal. Sci. Technol., 2018, 8(9), 2460-2466.
[http://dx.doi.org/10.1039/C8CY00089A]
[25]
Marinkovic, J.M.; Riisager, A.; Franke, R.; Wasserscheid, P.; Haumann, M. Fifteen years of supported ionic liquid phase-catalyzed hydroformylation: Material and process developments. Ind. Eng. Chem. Res., 2019, 58(7), 2409-2420.
[http://dx.doi.org/10.1021/acs.iecr.8b04010]
[26]
Gheewala, S.H. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biof. Res. J., 2023, 10(1), 1810-1815.
[http://dx.doi.org/10.18331/BRJ2023.10.1.5]

© 2024 Bentham Science Publishers | Privacy Policy