Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Review of Analytical Methods for Evaluating Azithromycin in the Context of Green Analytical Chemistry

Author(s): Aline Sinzervinch, Isadora Alves Lustosa and Ana Carolina Kogawa*

Volume 29, Issue 30, 2023

Published on: 18 October, 2023

Page: [2369 - 2376] Pages: 8

DOI: 10.2174/0113816128271482231010053929

Price: $65

Abstract

Background: Azithromycin (AZT) is an antimicrobial available in different pharmaceutical forms and many people can have access to this medicine. Therefore, the existence of adequate and reliable analytical methods for evaluating the quality of AZT and AZT-based products is essential.

Objective/Methods: The purpose of this review is to discuss the analytical methods for evaluating AZT present in the literature and official compendia in the context of Green Analytical Chemistry (GAC).

Results: Among the methods found in the literature for evaluating AZT, the most used method is HPLC (62%) followed by TLC (14%) and the microbiological method by agar diffusion (14%). Even pharmacopoeias recommend the analysis of AZT by HPLC or agar diffusion. Acetonitrile and methanol account for 35% of the most used solvents in the analyses, followed by buffer.

Conclusion: AZT lacks analytical methods in the context of GAC. Both physical-chemical and microbiological methods can contemplate the environmentally friendly way to analyze AZT and AZT-based products, depending only on the chosen conditions. Ethanol, purified water, acetic acid instead of methanol, acetonitrile, buffer, formic acid in the physical-chemical methods are excellent alternatives. However, in the microbiological method, turbidimetry is a great option instead of agar diffusion.

Keywords: Azithromycin, analytical methods, quality control, green analytical chemistry, environmentally friendly method, antimicrobial.

[1]
Bakheit AHH, Al-Hadiya BMH, Abd-Elgalil AA. Azithromycin. Profiles Drug Subst Excip Relat Methodol 2014; 39: 1-40.
[http://dx.doi.org/10.1016/B978-0-12-800173-8.00001-5] [PMID: 24794904]
[3]
United States Pharmacopeia. Rockville, MD: United States Convention Inc. 2020. https://www.usp.org/
[4]
European Pharmacopeia. Strasbourg: Council of Europe 2019. https://pheur.edqm.eu/home
[5]
Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt Chem 2013; 50: 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[6]
Kogawa AC, Salgado HRN. Optimization of microbiological method by turbidimetry for quantification of rifaximin tablets: Validation, application and evaluation of degraded compounds. Pharm Anal Acta 2016; 7: 518-24.
[7]
Kogawa AC, Salgado HRN. Analytical Methods: Where do we stand in the current environmental scenario? EC Microbiol 2017; 13: 102-4.
[8]
Ferreira RGL, Da Silva Júnior JR, Torres IMS, Kogawa AC. Fast and new microbiological method for evaluating the potency of marbofloxacin-based tablets. J AOAC Int 2023; 106(3): 690-4.
[http://dx.doi.org/10.1093/jaoacint/qsac137] [PMID: 36326443]
[9]
Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press 1998; pp.30.
[10]
Durand E, Lecomte J, Villeneuve P. From green chemistry to nature: The versatile role of low transition temperature mixtures. Biochimie 2016; 120: 119-23.
[http://dx.doi.org/10.1016/j.biochi.2015.09.019] [PMID: 26391220]
[11]
Mukherjee P. Green chemistry – A novel approach towards sustainability. J Chil Chem Soc 2021; 66(1): 5075-80.
[http://dx.doi.org/10.4067/S0717-97072021000105075]
[12]
Gama MR, Melchert WR, Paixão TRLC, Rocha FRP. An overview of the Brazilian contributions to green analytical chemistry. An Acad Bras Cienc 2019; 91: e20180294.
[http://dx.doi.org/10.1590/0001-3765201920180294] [PMID: 31017188]
[13]
Billiard KM, Dershem AR, Gionfriddo E. Implementing green analytical methodologies using solid-phase microextraction: A review. Molecules 2020; 25(22): 5297-310.
[http://dx.doi.org/10.3390/molecules25225297] [PMID: 33202856]
[14]
Sheldon RA. Engineering a more sustainable world through catalysis and green chemistry. J R Soc Interface 2016; 13(116): 20160087.
[http://dx.doi.org/10.1098/rsif.2016.0087] [PMID: 27009181]
[15]
Firth A, Prathapan P. Azithromycin: The first broad-spectrum therapeutic. Eur J Med Chem 2020; 207: 112739.
[http://dx.doi.org/10.1016/j.ejmech.2020.112739] [PMID: 32871342]
[16]
Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacol Ther 2014; 143(2): 225-45.
[http://dx.doi.org/10.1016/j.pharmthera.2014.03.003] [PMID: 24631273]
[17]
Turčinov T, Pepeljnjak S. Azithromycin potency determination: Optimal conditions for microbiological diffusion method assay. J Pharm Biomed Anal 1998; 17(4-5): 903-10.
[http://dx.doi.org/10.1016/S0731-7085(97)00275-6] [PMID: 9682177]
[18]
Breier AR, Garcia CV, Oppe TP, Steppe M, Schapoval EES. Microbiological assay for azithromycin in pharmaceutical formulations. J Pharm Biomed Anal 2002; 29(5): 957-61.
[http://dx.doi.org/10.1016/S0731-7085(02)00213-3] [PMID: 12093530]
[19]
Zubata P, Ceresole R, Rosasco MA, Pizzorno MT. A new HPLC method for azithromycin quantitation. J Pharm Biomed Anal 2002; 27(5): 833-6.
[http://dx.doi.org/10.1016/S0731-7085(01)00554-4] [PMID: 11814725]
[20]
Shaikh KA, Patil SD, Devkhile AB. Development and validation of a reversed-phase HPLC method for simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet dosage form. J Pharm Biomed Anal 2008; 48(5): 1481-4.
[http://dx.doi.org/10.1016/j.jpba.2008.09.031] [PMID: 18993009]
[21]
Yang ZY, Wang L, Tang X. Determination of azithromycin by ion-pair HPLC with UV detection. J Pharm Biomed Anal 2009; 49(3): 811-5.
[http://dx.doi.org/10.1016/j.jpba.2008.12.018] [PMID: 19162426]
[22]
Ghari T, Kobarfard F, Mortazavi SA. Development of a simple RP-HPLC-UV method for determination of azithromycin in bulk and pharmaceutical dosage forms as an alternative to the USP method. Iran J Pharm Res 2013; 12: 57-63.
[PMID: 24250672]
[23]
Okaru A, Abuga K, Kamau F, Ndwigah S, Lachenmeier D. A robust liquid chromatographic method for confirmation of drug stability of azithromycin in bulk samples, tablets and suspensions. Pharmaceutics 2017; 9(4): 11.
[http://dx.doi.org/10.3390/pharmaceutics9010011] [PMID: 28245574]
[24]
Ebrahimzadeh H, Yamini Y, Ara KM, Kamarei F, Khalighi-Sigaroodi F. Determination of azithromycin in biological samples by LLLME combined with LC. Chromatographia 2010; 72(7-8): 731-5.
[http://dx.doi.org/10.1365/s10337-010-1692-9]
[25]
Japanese Pharmacopoeia. Tokyo: Society of Japanese Pharmacopoeia 2021.
[26]
Khedr A, Sheha M. Quantitative thin-layer chromatographic method of analysis of azithromycin in pure and capsule forms. J Chromatogr Sci 2003; 41(1): 10-6.
[http://dx.doi.org/10.1093/chromsci/41.1.10] [PMID: 12597590]
[27]
Kwiecień A, Krzek J, Walczak M. Stress degradation studies on azithromycin and development of a validated stability-indicating TLC-densitometric method with HPLC/electrospray ionization-MS analysis of degradation products. J AOAC Int 2012; 95(5): 1418-24.
[http://dx.doi.org/10.5740/jaoacint.10-196] [PMID: 23175975]
[28]
Bouklouze A, Kharbach M, Cherrah Y, Vander Heyden Y. Azithromycin assay in drug formulations: Validation of a HPTLC method with a quadratic polynomial calibration model using the accuracy profile approach. Ann Pharm Fr 2017; 75(2): 112-20.
[http://dx.doi.org/10.1016/j.pharma.2016.08.004] [PMID: 27692351]
[29]
Liu F, Xu Y, Huang J, Gao S, Guo Q. Sensitive liquid chromatography/mass spectrometry assay for the quantification of azithromycin in human plasma. Biomed Chromatogr 2007; 21(12): 1272-8.
[http://dx.doi.org/10.1002/bmc.883] [PMID: 17604364]
[30]
Choemunng A, Na-Bangchang K. An alternative liquid chromatography-mass spectrometric method for the determination of azithromycin in human plasma and its application to pharmacokinetic study of patients with malaria. J Liq Chromatogr Relat Technol 2010; 33(16): 1516-28.
[http://dx.doi.org/10.1080/10826076.2010.489009] [PMID: 21073024]
[31]
Jiang B, Chen J, Ruan Z, Lou H, Yu L. Quantification of azithromycin in human plasma by liquid chromatography tandem mass spectrometry: Application to a bioequivalence study. Arzneimittelforschung 2012; 62(5): 230-5.
[http://dx.doi.org/10.1055/s-0031-1301343] [PMID: 22344571]
[32]
Ben-Eltriki M, Somayaji V, Padwal RS, Brocks DR. A liquid chromatography-mass spectrometric method for the quantification of azithromycin in human plasma. Biomed Chromatogr 2013; 27(8): 1012-7.
[http://dx.doi.org/10.1002/bmc.2896] [PMID: 23494651]
[33]
Sok V, Marzan F, Gingrich D, Aweeka F, Huang L. Development and validation of an LC-MS/MS method for determination of hydroxychloroquine, its two metabolites, and azithromycin in EDTA-treated human plasma. PLoS One 2021; 16(3): e0247356.
[http://dx.doi.org/10.1371/journal.pone.0247356] [PMID: 33667247]
[34]
Paul P, Duchateau T, Sänger-van de Griend C, Adams E, Van Schepdael A. Capillary electrophoresis with capacitively coupled contactless conductivity detection method development and validation for the determination of azithromycin, clarithromycin, and clindamycin. J Sep Sci 2017; 40(17): 3535-44.
[http://dx.doi.org/10.1002/jssc.201700560] [PMID: 28683179]
[35]
El-Yazbi AF, Khamis EF, Youssef RM, El-Sayed MA, Aboukhalil FM. Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. Heliyon 2020; 6(9): e04819.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04819] [PMID: 32984577]
[36]
Shintani H. Validation study of rapid assays of bioburden, endotoxins and other contamination. Biocontrol Sci 2016; 21(2): 63-72.
[http://dx.doi.org/10.4265/bio.21.63] [PMID: 27350424]
[37]
Moreno ADH, Salgado HRN. Microbiological assay for ceftazidime injection. J AOAC Int 2007; 90(5): 1379-82.
[http://dx.doi.org/10.1093/jaoac/90.5.1379] [PMID: 17955982]
[38]
da Trindade MT, Kogawa AC, Salgado HRN. Turbidimetric method: A multi-advantageous option for assessing the potency of ceftriaxone sodium in powder for injection. J AOAC Int 2021; 104(1): 204-10.
[http://dx.doi.org/10.1093/jaoacint/qsaa085] [PMID: 33221857]
[39]
Nascimento PA, Kogawa AC, Salgado HRN. Turbidimetric method: A new, ecological and fast way for evaluation of vancomycin potency. J AOAC Int 2020; 103(6): 1582-7.
[http://dx.doi.org/10.1093/jaoacint/qsaa068] [PMID: 33247749]
[40]
Tótoli E, Salgado H. Rapid turbidimetric assay to determine the potency of daptomycin in lyophilized powder. Pharmaceutics 2015; 7(3): 106-21.
[http://dx.doi.org/10.3390/pharmaceutics7030106] [PMID: 26184288]
[41]
Tótoli EG, Nunes Salgado HR. Development and validation of a rapid turbidimetric assay to determine the potency of ampicillin sodium in powder for injectable solution. Anal Methods 2013; 5(21): 5923-8.
[http://dx.doi.org/10.1039/c3ay40847g]
[42]
Gama RGM, Chaves MHC. Boas práticas para cromatografia líquida de alta eficiência: Uma abordagem para o controle de qualidade farmacêutico. Sci Chromatogr 2019; 11(3): 108-25.
[http://dx.doi.org/10.5935/sc.2019.010]
[43]
Claessens HA, van Straten MA, Kirkland JJ. Effect of buffers on silica-based column stability in reversed-phase high-performance liquid chromatography. J Chromatogr A 1996; 728(1-2): 259-70.
[http://dx.doi.org/10.1016/0021-9673(95)00904-3]
[44]
Do Nascimento PA, Kogawa AC, Salgado HRN. Current status of vancomycin analytical methods. J AOAC Int 2020; 103(3): 755-69.
[http://dx.doi.org/10.1093/jaocint/qsz024] [PMID: 33241378]
[45]
de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm J 2019; 27(1): 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[46]
Kogawa K, Carolina A, Salgado S, Nunes HR. Analytical methods need optimization to get innovative and continuous processes for future pharmaceuticals. Scholars Aca J Pharma 2016; 5(6): 240-4.
[http://dx.doi.org/10.21276/sajp.2016.5.6.3]
[47]
World Health Organization. Environmental health criteria 154. 1993. Available from: http://www.inchem.org/documents/ehc/ ehc/ehc154.htm (Accessed June 30, 2023)
[48]
World Health Organization. Environmental health criteria 196. 1997. Available from: http://www.inchem.org/documents/ehc/ ehc/ehc196.htm (Accessed June 30, 2023)
[49]
Kogawa AC, Cernic BG, do Couto LGD, Salgado HRN. Synthetic detergents: 100 years of history. Saudi Pharm J 2017; 25(6): 934-8.
[http://dx.doi.org/10.1016/j.jsps.2017.02.006] [PMID: 28951681]
[50]
Kogawa AC, Salgado HRN. Ethanol on HPLC: Epiphany or nonsense? Acta Sci Pharm Sci 2018; 2: 14-5.
[51]
da Silva TAC, da Silva Júnior JR, Kogawa AC. A new, ecological and stability-indicating method by HPLC for the quantification of moxifloxacin in tablets. Curr Green Chem 2023; 10(2): 165-73.
[http://dx.doi.org/10.2174/2213346110666230331085433]
[52]
de Oliveira AS, de Oliveira NRL, de Oliveira Neto JR, Tavares LL, Kogawa AC. Green method for evaluation of marbofloxacin tablets by HPLC and evaluation of interchangeability with UV and turbidimetric methods. J AOAC Int 2023; qsad102.
[http://dx.doi.org/10.1093/jaoacint/qsad102] [PMID: 37676818]
[53]
Kogawa AC, Mendonça JN, Lopes NP, Salgado HRN. Eco-friendly pharmaceutical analysis of rifaximin in tablets by HPLC-MS and microbiological turbidimetry. J Chromatogr Sci 2021; 59(7): 597-605.
[http://dx.doi.org/10.1093/chromsci/bmab044] [PMID: 33942054]
[54]
da Trindade MT, Kogawa AC, Salgado HRN. A clean, sustainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC. J Chromatogr Sci 2022; 60(3): 260-6.
[http://dx.doi.org/10.1093/chromsci/bmab078] [PMID: 34131704]
[55]
Aleixa do Nascimento P, Kogawa AC, Salgado HRN. A new ecological HPLC method for determination of vancomycin dosage form. Curr Chromatogr 2020; 7(2): 82-90.
[http://dx.doi.org/10.2174/2213240607666200324140907]
[56]
Pedroso TM, Schepdael AV, Salgado HRN. Application of the principles of green chemistry for the development of a new and sensitive method for analysis of ertapenem sodium by capillary electrophoresis. Int J Anal Chem 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/1456313] [PMID: 30719040]
[57]
Striegel MF, Hill J. Thin-Layer Chromatography for Binding Media Analysis. Los Angeles: Scientific Tools for Conservation 1996.
[58]
Watson DG. Pharmaceutical analysis: A textbook for pharmacy students and pharmaceutical chemists. Edinburgh: Elsevier Churchill Livingstone 2005.
[59]
Kogawa AC, Mendonça JN, Lopes NP, Nunes Salgado HR. Stability-indicating thin-layer chromatographic method for determination of darunavir in complex darunavir-β-cyclodextrin in the presence of its degradation products. Anal Methods 2014; 6(11): 3689-93.
[http://dx.doi.org/10.1039/C4AY00248B]
[60]
Kogawa AC, Mendonça JN, Lopes NP, Nunes Salgado HR. Method indicative of stability for the determination of rifaximin and its degradation products by thin chromatographic. Curr Pharm Anal 2017; 13(6): 520-4.
[http://dx.doi.org/10.2174/1573412912666160801103712]
[61]
Pedroso TM, Kogawa AC, Salgado HRN. Validation and routine application of a versatile bioassay for quantification of ertapenem sodium. Res Rev: J Pharm Toxicol 2018; 6: 1-9.
[62]
Correa CBM, Kogawa AC, Chorilli M, Salgado HRN. Miniaturized microbiological method to determine the potency of rifaximin in tablets. J AOAC Int 2021; 104(4): 1049-54.
[http://dx.doi.org/10.1093/jaoacint/qsab017] [PMID: 33512492]
[63]
Richardi JF, Kogawa AC, Belavenuto EGT, Chorilli M, Salgado HRN. Ecological and miniaturized biological method for analysis of daptomycin potency. J AOAC Int 2021; 104(2): 466-71.
[http://dx.doi.org/10.1093/jaoacint/qsaa112] [PMID: 34020456]
[64]
Kogawa AC, Aguiar FA, Gaitani CM, Salgado HRN. Validation of a stability indicating capillary electrophoresis method for the determination of darunavir in tablets and comparison with the of infrared absorption spectroscopic method. World J Pharm Pharm Sci 2014; 3: 283-97.
[65]
Kogawa AC, Van Schepdael A, Salgado HRN. Eco-friendly evaluation of rifaximin in tablets by capillary electrophoresis. J Chromatogr Sci 2019; 57(5): 476-83.
[http://dx.doi.org/10.1093/chromsci/bmz005] [PMID: 30926987]
[66]
Kogawa AC, Salgado HRN. Development and validation of infrared spectroscopy method for the determination of darunavir in tablets. Phys Chem 2013; 3: 1-6.
[67]
Kogawa AC, Mello NP, Salgado HRN. Quantification of doxycycline in raw material by an eco-friendly method of infrared spectroscopy. Pharm Anal Acta 2016; 7: 463-6.
[68]
Kogawa AC, Salgado HRN. Golden age of green chemistry. ECMI 2017; 12: 52-4.
[69]
Kogawa AC, Nunes Salgado HR. Spectrophotometry in infrared region: A new, low cost and green way to analyze tablets of rifaximin. Curr Pharm Anal 2018; 14(2): 108-15.
[http://dx.doi.org/10.2174/1573412913666161213103657]
[70]
Souza Lima JG, De Marco BA, Salgado HRN. Green analytical method for quantification of secnidazole in tablets by Fourier- Transform Infrared Spectroscopy (FTIR). Drug Analyt Res 2018; 2(2): 14-9.
[http://dx.doi.org/10.22456/2527-2616.88545]
[71]
Rebouças CT, Kogawa AC, Salgado HRN. A new green method for the quantitative analysis of enrofloxacin by fourier-transform infrared spectroscopy. J AOAC Int 2018; 101(6): 2001-5.
[http://dx.doi.org/10.5740/jaoacint.17-0431] [PMID: 29776457]
[72]
Nascimento PA, Kogawa AC, Salgado HRN. A green and sustainable method by infrared for quantitative determination of sodium cephalothin. Austin J Anal Pharm Chem 2019; 6: 1117-21.
[73]
Rechelo BS, Kogawa AC, Salgado HRN. Quantitative analysis of cefazolin sodium in lyophilized powder by infrared spectrophotometry: Green, low cost, fast and effective. Spectrochim Acta A Mol Biomol Spectrosc 2019; 208: 157-61.
[http://dx.doi.org/10.1016/j.saa.2018.09.058] [PMID: 30312842]
[74]
Nascimento PA, Kogawa AC, Salgado HRN. A new and ecological method to quantify vancomycin in pharmaceutical product by infrared spectrometry. Acta Chim Slov 2021; 68(2): 313-9.
[http://dx.doi.org/10.17344/acsi.2020.6107] [PMID: 34738128]
[75]
Kogawa A, Salgado HRN. Quantitative analysis of pharmaceutical products by spectrophotometry in the infrared region: A practical review. Drug Analyt Res 2023; 6(2): 3-7.
[http://dx.doi.org/10.22456/2527-2616.127631]
[76]
Kogawa AC, Lustosa IA, de Souza Gil E. Analytical aspects for evaluation of pharmaceutical products: A mini-review. Curr Pharm Anal 2022; 18(10): 909-18.
[http://dx.doi.org/10.2174/1573412918666220928120332]
[77]
Ferreira ALC, Lustosa IA, Kogawa AC. Quality management: History, evolution and aspects. Int J Produc Quality Manag 2023; 39(4): 554-66.
[http://dx.doi.org/10.1504/IJPQM.2023.132849]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy