Engineering Journal: Science and InnovationELECTRONIC SCIENCE AND ENGINEERING PUBLICATION
Certificate of Registration Media number Эл #ФС77-53688 of 17 April 2013. ISSN 2308-6033. DOI 10.18698/2308-6033
  • Русский
  • Английский
Article

Numerical simulation of combustion in the chamberof a model low-thrust rocket engine operating on the gaseous oxygen–methane components

Published: 20.07.2023

Authors: Fedotova K.V., Kovalev K.E., Vorozheeva O.A.

Published in issue: #7(139)/2023

DOI: 10.18698/2308-6033-2023-7-2292

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

The paper provides numerical study of the working process in a model low-thrust rocket engine operating on the gaseous oxygen-methane components based on results of the preliminary computational analysis of the component supply system efficiency. Combustion of the oxygen-methane unprepared preliminary mixture was numerically simulated carried using the fast chemistry approaches, including eddy dissipation models (EDM), chemical equilibrium and flamelet. To describe the chemical processes occurring during combustion, the Westbrook and Dreyer quasi-global two-stage mechanism, the reduced Jones—Lindstedt kinetic mechanism with the Frassoldati corrections and the GRI Mech 3.0 mechanism were used. Calculations were performed in the two-dimensional and three-dimensional formulations of the gaseous oxygen and methane diffusion combustion. Results of the parametric study (concentration and temperature fields) are presented for the oxidizer excess coefficients of α = 0.7; 1; 1.2. It is shown that using a mathematical model based on the Reynolds-averaged Navier-Stokes equations closed by the k—ω SST turbulence model, supplemented with the flamelet model based on the GRI Mech 3.0 mechanism taking into account the radiative heat transfer makes it possible to obtain satisfactory convergence with results of the experimental study and to qualitatively assess the workflow in this type of engine.

This work was performed with support by the Grant from the President of the Russian Federation MK-3410.2022.4


References
[1] Kutuev R.Kh., Lebedev I.N., Salich V.L. Razrabotka perspektivnykh RDMT na ekologicheski chistykh toplivnykh kompozitsiyakh [Development of advanced low thrust rocket engines with ecologically friendly propellants]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta — Herald of the Samara State Aerospace University, 2009, no. 3–3 (19), pp. 101–109.
[2] Vaulin S.D., Salich V.L. Metodika proyektirovaniya vysokoeffektivnykh raketnykh dvigateley maloy tyagi na osnove chislennogo modelirovaniya vnutrikamernykh protsessov [The highly effective low thrust rocket engines designing methods, based on numerical simulation of intrachamber processes]. Vestnik YuUrGU. Ser. Mashinostroyeniye — Bulletin of the South Ural State University. Series Mechanical Engineering, 2012, no. 12, pp. 43–50.
[3] Egorychev V.S., Shabliy L.S., Zubanov V.M. Modelirovaniye vnutrikamernogo rabochego protsessa RDMT na gazoobraznykh kislorode i vodorode v ANSYS CFX [Simulation of the operating processes in LTRE combustion chamber on gaseous oxygen and hydrogen in ANSYS CFX]. Samara, Samara University Publ., 2016, 136 p.
[4] Mikushin A.Yu., Samoylova A.A., Bivol G.Yu., Korobov A.Ye., Golovastov S.V. Metod rascheta nestatsionarnogo tyagovogo usiliya ezhektornogo nasadka pulsiruyuschego reaktivnogo dvigatelya [Method for calculating the non-stationary traction force of the ejector nozzle of a pulsating jet engine]. Nauka i obrazovanie. MGTU im. N.E. Baumana. Elektron. zhurnal — Science & Education. BMSTU. Electronic journal, 2016, no. 6, pp. 130–144.
[5] Mingazov B.G., Yavkin V.B., Sabirzyanov A.N., Baklanov A.V. Analiz primenimosti modeley goreniya dlya rascheta mnogoforsunochnoy kamery sgoraniya GTD [Analysis of combustion models applicability for designing combustion chamber with a large number of nozzles]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta — Herald of the Samara State Aerospace University, 2011, no. 5, pp. 208–214.
[6] Morozov V.V., Shilin A.A., Ravina A.A., Shalynkov S.A. Chislennoye modelirovanie protsessa goreniya metana i vozdukha v tsilindricheskoy kamere [Numerical simulation of the combustion of methane and air in a cylindrical chamber burning]. Izvestiya TulGU. Tekhnicheskiye nauki — Izvestiya Tula State University. Series Technical Sciences, 2021, no. 9, pp. 356–262.
[7] Arefyev K.Yu., Fedotova K.V., Krikunova A.I., Panov V.A. Matematicheskoe i fizicheskoe modelirovanie vliyaniya pulsatsiy skorosti snosyaschego potoka vozdukha na strukturu plameni pri diffuzionnom rezhime goreniya metana [Mathematical and physical simulation of the cross-flow velocity pulsation effect on the flame structure during the diffusion mode of methane combustion]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye Nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2020, no. 2, pp. 65–84.
[8] Hossain A. Computational study of methane-air combustion using the species transport model. AIAA SciTech Forum. San Diego, 2022, 12 p.
[9] Ershadi A., Zargarabadi R. Second-order modeling of non-premixed turbulent methane-air combustion. J. Cent. South. Univ., 2021, no. 28, pp. 3545–3555.
[10] Da Silva C.V., Centeno F.R. 3D Analysis of turbulent non-premixed combustion of natural gas in a horizontal cylindrical chamber. In: Proceedings of 22st Brazilian Congress of Mechanical Engineering. Brazil, 2013, 10 p.
[11] Spalding D.B. Mixing and chemical reaction in steady confined turbulent flames. In: 13th Symp. (Int.) Comb. Pittsburgh, 1970, 649 p.
[12] Magnussen B.F., Hjertager B.H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In: Symposium (International) on Combustion, 1977, vol. 16, no. 1, pp. 719–729.
[13] Belov G.V. Modelirovaniye ravnovesnykh sostoyaniy mnogokomponentnykh geterogennykh system [Computer simulation of a thermodynamic equilibrium in complex heterogeneous systems]. Matem. Mod., 2005, vol. 17, no. 2, pp. 81–91.
[14] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, vol. 10, no. 3, pp. 319–339.
[15] Yun A.A. Teoriya i praktika modelirovaniya turbulentnykh techeniy [Theory and practice of simulating the turbulent flows]. Moscow, URSS, 2009, 273 p.
[16] Westbrook C.K., Dryer F.L Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology, 1981, no. 27, pp. 31–43.
[17] Frassoldati A., Cuoci A., Faravelli T., Ranzi E., Candusso C., Tolazzi D. Simplified kinetic schemes for oxy-fuel combustion. In: Proceedings of the 1st International Conference on Sustainable Fossil Fuels for Future Energy. Italy, Rome, 2009, 14 p.
[18] Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R., Song S., Gardiner W.C., Lissianski V., Qin Z. GRI-MECH 3.0. Available at: http://www.me.berkley.edu/gri_mech/
[19] Vorozheeva O.A., Fedotova K.V., Kovalev K.E. Eksperimentalnoe issledovanie effektivnosti rabochikh protsessov v kamere raketnogo dvigatelya maloy tyagi na komponentakh kislorod–metan [Experimental study of the workflow efficiency in the chamber of a low-thrust rocket engine operating on the oxygen — methane components]. Inzhenerny zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2022, iss. 11. https://doi.org/10.18698/2308-6033-2022-11-2229