Scientific journal
Bulletin of Higher Educational Institutions
North Caucasus region

TECHNICAL SCIENCES


UNIV. NEWS. NORTH-CAUCAS. REG. TECHNICAL SCIENCES SERIES. 2023; 3: 59-64

 

http://dx.doi.org/10.17213/1560-3644-2023-3-59-64

 

Theoretical and experimental studies of the conversion of CO2 to synthesis gas

I.N. Zubkov, A.N. Saliev, M.A. Timokhina, S.A. Lavrenov, T.G. Ivanova, V.A. Taranushich, R.E. Yakovenko

Ivan N. Zubkov Junior Researcher Officer, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia,  71650021.qwe@mail.ru

Aleksei N. Saliev – Cand. Sci. (Eng.), Associate Professor, Department «Chemical Technology», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia, saliev.aleksei@yandex.ru

Mariya A. Timokhina – Technician, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia,  timoxmasha14@mail.ru

Sergey A. Lavrenov – Technician, Laboratory «Catalysts and Technologies for Processing of Carbonaceous Materials», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia,  vip.sergo0195@mail.ru

Tat'yana G. Ivanova – Cand. Sci. (Chim.), Associate Professor, Department «Chemical Technology», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia,  tgalikyan@rambler.ru

Vitaliy A. Taranushich – Dr. Sci. (Eng.), Professor, Department «Chemical Technologу», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia,  vitaliy.taranushich@bk.ru

Roman E. Yakovenko – Can. Sci. (Eng.) Senior Research, Laboratory «Catalysts and Technologies for Processing of  Carbonaceous Materials», Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia, jakovenko39@gmail.com

 

Abstract

In this work, by minimizing the value of the Gibbs free energy, thermodynamic studies of the conversion of CO2 into synthesis gas by the reverse reaction of water gas in the temperature range of 300-1000 °C, pressure of 0,1-1,0 MPa and the ratio H2/CO2 = 0,5-3,0. Experimental studies of the process of CO2 conversion in synthesis gas were carried out on an industrial catalyst of the NIAP 06-06 brand at a pressure of 0,1 MPa, a temperature of 500-800 °C, a ratio of H2/CO2 = 1, GHSV 32000 h-1. It has been established that at a temperature of 650 °C, synthesis gas is formed with an H2/CO ratio to 2, which makes it possible to use it in the synthesis of hydrocarbons by the Fischer-Tropsch method or in the synthesis of methanol.

 

Acknowledgments: the work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the state task FENN-2020-0021 (application no. 2019-0990), using the equipment of the CCP "Nanotechnology" of the M. I. Platov SRSPU (NPI).

For citation: Zubkov I.N., Saliev A.N., Timokhina M.A., Lavrenov S.A., Ivanova T.G., Taranushich V.A., Yakovenko R.E. Theoretical and  experimental studies of the conversion of CO2 to synthesis gas. Izv. vuzov. Sev.-Kavk. region. Techn. nauki=Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences. 2023;(3):59-64. (In Russ.). http://dx.doi.org/ 10.17213/1560-3644-2023-3-59-64

 

Keywords: carbon dioxide, synthesis gas, thermodynamic calculations

 

Full text: [in elibrary.ru]

 

References

  1. Das S., Pérez-Ramírez J., Gong J., Dewangan N., Hidajat K., Gates B.C., Kawi S. Core-shell Structured Catalysts for Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2. Chemical Society Reviews. 2020;49(10): 2937-3004.
  2. Baena-Moreno F.M., Cid-Castillo N., Arellano-García H., Reina T.R. Towards Emission Free Steel Manufacturing – Exploring the advantages of a CO2 Methanation Unit to Minimize CO2 Emissions. Science of The Total Environment. 2021;(781):146776.
  3. Miao E., Du Y., Wang H., Xiong Z., Zhao Y., Zhang J. Experimental Study and Kinetics on CO2 Mineral Sequestration by the Direct Aqueous Carbonation of Pepper Stalk Ash. Fuel. 2021;(303):121230.
  4. Jarvis S.M., Samsatli S. Technologies and Infrastructures Underpinning Future CO2 Value Chains: A Comprehensive Review and Comparative Analysis. Renewable and Sustainable Energy Reviews. 2018;(85):46-68.
  5. González-Castaño M., Dorneanu B., Arellano-García H. The Reverse Water Gas Shift Reaction: a Process Systems Engineering Perspective. Reaction Chemistry & Engineering. 2021;6(6):954-976.
  6. Zhu M., Ge Q., Zhu X. Catalytic Reduction of CO2 to CO Via Reverse Water Gas Shift Reaction: Recent Advances in the Design of Active and Selective Supported Metal Catalysts. Transactions of Tianjin University. 2020;(26):172-187.
  7. Rytter E., Tsakoumis N.E., Holmen A. On the Selectivity to Higher Hydrocarbons in Co-based Fischer–Tropsch Synthesis. Catalysis Today. 2016;(261):3-16.
  8. Todic B., Nowicki L., Nikacevic N., Bukur D.B. Fischer-Tropsch Synthesis Product Selectivity Over an Industrial Iron-based Catalyst: Effect of Process Conditions. Catalysis Today. 2016;(261):28-39.
  9. Teimouri Z., Abatzoglou N., Dalai A.K. Kinetics and Selectivity Study of Fischer-Tropsch Synthesis to C5+ Hydrocarbons: A Review. Catalysts. 2021;11(3):330.
  10. Niu C., Xia M., Chen C., Ma Z., Jia L., Hou B., Li D. Effect of Process Conditions on the Product Distribution of Fischer-Tropsch Synthesis Over an Industrial Cobalt-based Catalyst Using a Fixed-bed Reactor. Applied Catalysis A: General. 2020;(601):117630.
  11. Ai X., Xie H., Chen S., Zhang G., Xu B., Zhou G. Highly Dispersed Mesoporous Cu/γ-Al2O3 Catalyst for RWGS Reaction. International Journal of Hydrogen Energy.  022;47(33):14884-14895.