留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价

王其可 刘文明 凌勇 许艺馨 张航 段云刚 郭锦棠

王其可,刘文明,凌勇,等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液,2023,40(5):629-636 doi: 10.12358/j.issn.1001-5620.2023.05.012
引用本文: 王其可,刘文明,凌勇,等. ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价[J]. 钻井液与完井液,2023,40(5):629-636 doi: 10.12358/j.issn.1001-5620.2023.05.012
WANG Qike, LIU Wenming, LING Yong, et al.The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid,2023, 40(5):629-636 doi: 10.12358/j.issn.1001-5620.2023.05.012
Citation: WANG Qike, LIU Wenming, LING Yong, et al.The synthesis of ATP loaded heterocyclic amphoteric copolymer and its performance and mechanisms of reducing filtration rate under ultra-high temperatures[J]. Drilling Fluid & Completion Fluid,2023, 40(5):629-636 doi: 10.12358/j.issn.1001-5620.2023.05.012

ATP负载杂环两性共聚物型超高温降失水剂的合成与性能评价

doi: 10.12358/j.issn.1001-5620.2023.05.012
基金项目: 渤海钻探博士创新基金项目“抗温240 ℃油井水泥降失水剂、缓凝剂分子结构设计及合成工艺研究”(2022BC72F)。
详细信息
    作者简介:

    王其可,高级工程师,1983年生,毕业于西安石油大学计算机科学与技术专业,现从事固井工程技术研究与管理工作。电话 (022)25963336;E-mail:wangqike@cnpc.com.cn。

  • 中图分类号: TE256.6

The Synthesis of ATP Loaded Heterocyclic Amphoteric Copolymer and Its Performance and Mechanisms of Reducing Filtration Rate under Ultra-High Temperatures

  • 摘要: 现有AMPS共聚物类降失水剂高温稀释降黏作用明显,对固井水泥浆的超高温沉降稳定性尤其不利。对此,合成了一种凹凸棒土(ATP)负载杂环两性共聚物型超高温固井降失水剂ATP-FLA以减弱共聚物的高温分散副作用。对负载前后的产品进行了综合性能对比,结果表明,在150~240 ℃范围内,加有4.0%~6.0%负载型降失水剂ATP-FLA、2.0%~4.0%悬浮剂的水泥浆API失水量不大于40 mL,沉降密度差不大于0.03 g/cm3,超高温稳定性良好。在240 ℃、120 MPa下养护后的水泥浆流性指数达到0.8976,浆体高温稠度高,剪切阻力大。同时,利用超高温固井现场水泥浆对ATP-FLA进行了适应性评价,结果表明其能够在有效控制API失水量的同时不影响水泥浆的其他性能。此外,利用分子动力学模拟研究了杂环两性共聚物FLA的作用机理。模拟分析结果表明,杂环两性共聚物FLA相比于常规阴离子型共聚物的优势在于其减弱了自身分子链受环境中金属离子的“去水化”效应干扰,更耐金属离子进攻,使其更加适应水泥浆体系的碱金属离子溶液环境。

     

  • 图  1  凹凸棒土负载杂环两性共聚物降失水剂ATP-FLA的分子结构设计图

    图  2  凹凸棒土(ATP)与降失水剂  (ATP-FLA)的红外光谱图

    图  3  含ATP-FLA的常规水泥浆体系在    240 ℃、120 MPa下的稠化养护曲线

    图  4  掺有FLA或ATP-FLA的水泥浆在240 ℃、  120 MPa下养护30 min后浆体流变参数的幂率函数拟合曲线

    图  5  含ATP-FLA的现场水泥浆体系在240 ℃、90 MPa 下的停开机测试曲线与实验结束后的浆体状态

    图  6  240 ℃下2种共聚物FLA-1(a, c)和FLA-2(b, d)   的阴离子基团中的O原子分别与Na原子、Ca原子以及水分子中H原子间的径向分布函数

    注:1 Å=0.1 nm。

    图  7  240 ℃下2种共聚物FLA-1和FLA-2在淡水中  以及在Na+与Ca2+的混合溶液中的链回转半径

    注:1 Å=0.1 nm。

    表  1  含ATP-FLA或FLA的水泥浆  降失水性能与沉降稳定性能

    水泥浆T/
    降失水剂/
    %
    悬浮剂/
    %
    FLAPI/
    mL
    ρ/
    g·cm−3
    ATP-FLA15042380.01
    20053280.03
    24064350.02
    FLA20053280.04
    24064360.04
    下载: 导出CSV

    表  2  含FLA或ATP-FLA的水泥浆在240 ℃、   120 MPa养护30 min后浆体的六速读数

    水泥浆φ3φ6φ100φ200φ300φ600
    含FLA3.506.50101.00185.50258.00>300
    含ATP-FLA4.007.00122.50225.00>300>300
    下载: 导出CSV

    表  3  掺有FLA或ATP-FLA的水泥浆在240 ℃、  120 MPa养护30 min后浆体的剪切应力

    水泥浆不同剪切速率(s−1)下的剪切应力τ/Pa
    5.1110.23170.45340.90511.351022.70
    含FLA1.793.3251.6194.79131.84
    含ATP-FLA2.043.5862.60114.98
    下载: 导出CSV
  • [1] 郑民,李建忠,吴晓智,等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学,2019,44(3):833-847.

    ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. Potential of oil and natural gas resources of main hydrocarbon-bearing basins and key exploration fields in China[J]. Earth Science, 2019, 44(3):833-847.
    [2] 严思明,杨坤,王富辉,等. 新型耐高温油井降失水剂的合成与性能评价[J]. 石油学报,2016,37(5):672-679.

    YAN Siming, YANG Kun, WANG Fuhui, et al. Synthesis and performance evaluation of novel high-temperature-resistant fluid loss additive for oil wells[J]. Acta Petrolei Sinica, 2016, 37(5):672-679.
    [3] 赵建胜,代清,霍锦华,等. 高温固井水泥浆用降失水剂GT-1的制备及性能[J]. 钻井液与完井液,2022,39(2):234-240.

    ZHAO Jiansheng, DAI Qing, HUO Jinhua, et al. Preparation and application of fluid loss additive GT-1 for high temperature cementing slurry[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):234-240.
    [4] 刘湘华. 油井水泥浆高温悬浮稳定剂的开发及性能研究[J]. 钻井液与完井液,2019,36(5):605-609.

    LIU Xianghua. Development of and study on a high temperature suspension stabilizer for oil well cement slurries[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):605-609.
    [5] CHEN X, WANG C W, XUE Y C, et al. A novel thermo-thickening viscosity modifying admixture to improve settlement stability of cement slurry under high temperatures[J]. Construction and Building Materials, 2021, 295:123606. doi: 10.1016/j.conbuildmat.2021.123606
    [6] 梁艳丽, 李鹏翔, 王爱民, 等. 一种油井水泥悬浮型聚合物缓凝剂及制备方法和油井水泥浆体系: CN201910301817.5[P]. 2021-07-16.

    LIANG Yanli, LI Pengxiang, WANG Aimin, et al. A suspension-type polymer retarder for oil well cement and its preparation method and oil well cement slurry system: CN201910301817.5[P]. 2021-07-16.
    [7] 罗敏,黄盛,何旭晟,等. 耐200 ℃固井水泥用悬浮剂的制备与性能表征[J]. 钻井液与完井液,2022,39(4):472-480.

    LUO Min, HUANG Sheng, HE Xusheng, et al. The preparation and performance characterization of a cement suspending agent resistant to 200 ℃[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):472-480.
    [8] 于永金,张航,夏修建,等. 超高温固井水泥浆降失水剂的合成与性能[J]. 钻井液与完井液,2022,39(3):352-358.

    YU Yongjin, ZHANG Hang, XIA Xiujian, et al. Synthesis and study of an ultra-high temperature filtrate reducer for cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):352-358.
    [9] 苏如军,李清忠. 高温缓凝剂GH-9的研究与应用[J]. 钻井液与完井液,2005,22(z1):89-92.

    SU Rujun, LI Qingzhong. Study and application of high temperature retarder GH-9 for cement slurry[J]. Drilling Fluid & Completion Fluid, 2005, 22(z1):89-92.
    [10] 王慧贤,才世杰,张广峰,等. GH-9油井水泥缓凝剂的性能与作用机理研究[J]. 新型建筑材料,2017,44(7):6-10,75.

    WANG Huixian, CAI Shijie, ZHANG Guangfeng, et al. Study on the performance and mechanism of GH-9 oil well cement retarder[J]. New Building Materials, 2017, 44(7):6-10,75.
    [11] 李科,陈霄峰,庄苍伟,等. SO42−/SnO2−凹凸棒土合成及在柠檬酸三异丁酯合成中的应用[J]. 广州化工,2022,50(5):40-43.

    LI Ke, CHEN Xiaofeng, ZHUANG Cangwei, et al. Synthesis of SO42−/SnO2− attapulgite and its application in synthesis of triisobutyl citrate[J]. Guangzhou Chemical Industry, 2022, 50(5):40-43.
    [12] 喻文娟,郭锦棠,郭春,等. 耐盐降失水剂AMPS/DMAA/IA的合成及其性能评价[J]. 化学工业与工程,2018,35(1):45-50.

    YU Wenjuan, GUO Jintang, GUO Chun, et al. Synthesis and performance evaluation of salt-resistant fluid loss additive AMPS/DMAA/IA[J]. Chemical Industry and Engineering, 2018, 35(1):45-50.
    [13] GUO S L, BU Y H. Synthesis and application of 2-acrylamido-2-methyl propane sulfonic acid/acrylamide/N, N-dimethyl acrylamide/maleic anhydride as a fluid loss control additive in oil well cementing[J]. Journal of Applied Polymer Science, 2013, 127(5):3302-3309. doi: 10.1002/app.37745
    [14] 郭锦棠,喻文娟,肖淼,等. 海水水泥浆体系降失水剂LTF-100L的合成及性能[J]. 石油化工,2016,45(8):988-993.

    GUO Jintang, YU Wenjuan, XIAO Miao, et al. Synthesis and properties of LTF-100L fluid loss additive available in seawater-based cement slurry system[J]. Petrochemical Technology, 2016, 45(8):988-993.
    [15] 邹双,熊钰丹,张天意,等. 盐膏层固井用降失水剂的研究与应用[J]. 钻井液与完井液,2021,38(6):765-770.

    ZOU Shuang, XIONG Yudan, ZHANG Tianyi, et al. Study and application of fluid loss additive used in cement slurries for cementing salt-gypsum stratum[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):765-770.
    [16] SUN F, PANG X Y, KAWASHIMA S, et al. Effect of tartaric acid on the hydration of oil well cement at elevated temperatures between 60 ℃ and 89 ℃[J]. Cement and Concrete Research, 2022, 161:106952. doi: 10.1016/j.cemconres.2022.106952
    [17] 夏修建,李鹏鹏,于永金,等. 侧链对油井水泥降失水剂性能的影响及机理研究[J]. 钻井液与完井液,2022,39(6):748-753.

    XIA Xiujian, LI Pengpeng, YU Yongjin, et al. Effects of polymer sidechains on performance of oil well cement filter loss reducers and studies on mechanisms of the effects[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):748-753.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  95
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-06-29
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回