留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于3D扫描打印技术的裂缝性堵漏模拟新方法

王涛 叶艳 朱金智 张震 陆海瑛 李城里 孙振玮

王涛,叶艳,朱金智,等. 基于3D扫描打印技术的裂缝性堵漏模拟新方法[J]. 钻井液与完井液,2023,40(5):571-577 doi: 10.12358/j.issn.1001-5620.2023.05.004
引用本文: 王涛,叶艳,朱金智,等. 基于3D扫描打印技术的裂缝性堵漏模拟新方法[J]. 钻井液与完井液,2023,40(5):571-577 doi: 10.12358/j.issn.1001-5620.2023.05.004
WANG Tao, YE Yan, ZHU Jinzhi, et al.Research on a new method for simulation of fractured plugging based on 3D scanning and printing technology[J]. Drilling Fluid & Completion Fluid,2023, 40(5):571-577 doi: 10.12358/j.issn.1001-5620.2023.05.004
Citation: WANG Tao, YE Yan, ZHU Jinzhi, et al.Research on a new method for simulation of fractured plugging based on 3D scanning and printing technology[J]. Drilling Fluid & Completion Fluid,2023, 40(5):571-577 doi: 10.12358/j.issn.1001-5620.2023.05.004

基于3D扫描打印技术的裂缝性堵漏模拟新方法

doi: 10.12358/j.issn.1001-5620.2023.05.004
基金项目: 塔里木油田项目“钻井堵漏大物模实验研究”(201021102441)。
详细信息
    作者简介:

    王涛,现在主要从事钻井液、完井液技术研究工作。E-mail:wangtao4-tlm@petrochina.com.cn。

    通讯作者:

    叶艳,E-mail:yeyan@cup.edu.cn。

  • 中图分类号: TE282

Research on a New Method for Simulation of Fractured Plugging Based on 3D Scanning and Printing Technology

  • 摘要: 塔里木油田博孜区块钻井过程中漏失频发,钻井液损失量大,造成巨大的经济损失,是目前该区块勘探开发的一大难点。现有的传统裂缝堵漏模拟方法较难真实模拟井下裂缝条件,导致室内实验效果与现场应用差异较大。以博孜区块为例,通过对其储层特征进行分析,明确储层漏失成因为天然裂缝漏失与薄弱地层破裂;基于3D扫描打印技术,制作具有储层真实裂缝特征的仿真缝板,以此为核心建立了一种裂缝性堵漏模拟新方法,使用自主研制的堵漏仪器开展了不同裂缝宽度下的堵漏配方评价实验。实验结果表明,裂缝性堵漏模拟新方法适用于多尺度裂缝性地层堵漏配方模拟评价,能够为针对裂缝性漏失的现场堵漏配方测试提供有力支持。

     

  • 图  1  博孜区块储层岩心裂缝情况

    图  2  博孜区块储层岩心的CT扫描

    图  3  仿真缝板制作流程

    图  4  缝板堵漏模拟评价装置

    注:仪器主要参数为:①工作压力:0~40 MPa;②工作温度:室温~150 ℃;③裂缝闭合压力:0~40 MPa;④堵漏液用量:4 L;⑤缝板规格:0~5 mm缝板。

    图  5  裂缝性地层堵漏模拟新方法实验步骤流程图

    图  6  堵漏效果模拟实验结果示意图

    图  7  不同配方压力曲线与封堵体对比

    表  1  博孜区块岩心裂缝发育情况

    井号岩性取心长度/m裂缝数/条线密度/(条/m)缝宽/mm主要充填方式
    博孜301中粗砂岩17.341327.600.10~3.00半充填/完全充填
    博孜15中-粗砂岩8.50111.300.10~2.00未充填
    博孜1801细砾岩、砂砾岩4.65173.700.01~0.12未充填
    博孜1203细砂岩、中砂岩15.91734.590.10~1.00未充填/半-全充填
    下载: 导出CSV

    表  2  裂缝粗糙度、迂曲度参数数据

    组号数据来源裂缝粗糙度裂缝迂曲度
    Z2JRC误差/%τxτyτ误差/%
    1#博孜12井目的层取心1.93041.4580.9841.1251.052
    树脂打印缝板1.86340.9741.170.9741.1031.0361.52
    金属打印缝板1.98941.8971.060.9911.1481.0671.43
    2#博孜1203井目的层取心3.42749.5410.9921.1741.079
    树脂打印缝板3.21548.6681.760.9811.1511.0631.48
    金属打印缝板3.60250.2711.471.0031.1911.0931.30
    下载: 导出CSV

    表  3  实验所用堵漏材料相关参数

    堵漏材料系列组分材料型号粒径/目形貌
    QSD系列硬质果壳QSD-19~30颗粒状
    QSD-26~20颗粒状
    KGD系列方解石KGD-130~70颗粒状
    KGD-220~40颗粒状
    KGD-39~24颗粒状
    KGD-45~16颗粒状
    KGD-53~6颗粒状
    BYD系列高分子化合物粉末状
    下载: 导出CSV

    表  4  不同尺度缝宽堵漏配方及实验结果

    缝宽/
    mm
    实验
    序号
    堵漏
    配方
    浓度/
    %
    最高承压/
    MPa
    累积漏失量/
    mL
    10.4%QSD-1+0.4%KGD-3+3.1%KGD-2+3.1%KGD-1+2%BYD921.47134
    0.7%QSD-1+0.8%KGD-3+2.1%KGD-2+3.4%KGD-1+2%BYD924.03121
    1.2%QSD-1+1.3%KGD-3+2%KGD-2+2.5%KGD-1+2%BYD916.22242
    34%KGD-3+3%KGD-2+3%KGD-1 +4%BYD1402000
    2%KGD-4+4%KGD-3+3%KGD-2+3%KGD-1 +4%BYD1614.47367
    4%KGD-4+4%KGD-3+3%KGD-2+3%KGD-1 +4%BYD1816.09259
    53%KGD-4+4%KGD-3+4%KGD-2+3%KGD-1+4%BYD1802000
    3%KGD-5+3%KGD-4+4%KGD-3+4%KGD-2 +3%KGD-1+4%BYD2117.40230
    6% KGD-5+3%KGD-4+4%KGD-3+4%KGD-2 +3%KGD-1+4%BYD249.92576
    下载: 导出CSV
  • [1] 王珂,张荣虎,曾庆鲁,等. 库车坳陷博孜-大北区块下白垩统深层-超深层储层特征及成因机制[J]. 中国矿业大学学报,2022,51(2):311-328. doi: 10.3969/j.issn.1000-1964.2022.2.zgkydxxb202202010

    WANG Ke, ZHANG Ronghu, ZENG Qinglu, et al. Characteristics and formation mechanism of Lower Cretaceous deep and ultra-deep reservoir in Bozi-Dabei area, Kuqa depression[J]. Journal of China University of Mining & Technology, 2022, 51(2):311-328. doi: 10.3969/j.issn.1000-1964.2022.2.zgkydxxb202202010
    [2] 殷召海,李国强,王海,等. 克拉苏构造带博孜 1 区块复杂超深井钻井完井关键技术[J]. 石油钻探技术,2021,49(1):16-21. doi: 10.11911/syztjs.2020130

    YIN Zhaohai, LI Guoqiang, WANG Hai, et al. Key technologies for drilling and completing ultra-deep wells in the Bozi 1 block of Kelasu structure[J]. Petroleum Drilling Techniques, 2021, 49(1):16-21. doi: 10.11911/syztjs.2020130
    [3] 郭宝利,袁孟雷,孟尚志,等. 一种新型堵漏模拟装置[J]. 钻井液与完井液,2003,20(4):47-49. doi: 10.3969/j.issn.1001-5620.2003.04.017

    GUO Baoli, YUAN Menglei, MENG Shangzhi, et al. A novel lost circulation simulator[J]. Drilling Fluid & Completion Fluid, 2003, 20(4):47-49. doi: 10.3969/j.issn.1001-5620.2003.04.017
    [4] 胡三清. JLX-2 动态堵漏实验仪的研制[J]. 石油机械,2000,28(6):13-15. doi: 10.3969/j.issn.1001-4578.2000.06.005

    HU Sanqing. Model JLX-2 dynamic loss plugging tester[J]. China Petroleum Machinery, 2000, 28(6):13-15. doi: 10.3969/j.issn.1001-4578.2000.06.005
    [5] 余维初,苏长明,鄢捷年. 高温高压动态堵漏评价系统[J]. 钻井液与完井液,2009,26(1):20-22. doi: 10.3969/j.issn.1001-5620.2009.01.008

    YU Weichu, SU Changming, YAN Jienian. HTHP dynamic system for lost circulation evaluation[J]. Drilling Fluid & Completion Fluid, 2009, 26(1):20-22. doi: 10.3969/j.issn.1001-5620.2009.01.008
    [6] 尹达,刘锋报,康毅力,等. 库车山前盐膏层钻井液漏失成因类型判定[J]. 钻采工艺,2019,42(5):121-123. doi: 10.3969/J.ISSN.1006-768X.2019.05.37

    YIN Da, LIU Fengbao, KANG Yili , et al. Kuche thrust of drilling fluid loss salt-gypsum type determination genesis[J]. Drilling & Production Technology, 2019, 42(5):121-123. doi: 10.3969/J.ISSN.1006-768X.2019.05.37
    [7] 李宁,李龙,王涛,等. 库车山前盐膏层与目的层漏失机理分析与治漏措施研究[J]. 广东化工,2020,48(11):101-103. doi: 10.3969/j.issn.1007-1865.2020.11.041

    LI Ning, LI Long, WANG Tao, et al. Leakage mechanism analysis and leakage control measures of salt gypsum layer and target layer in front of Kuqa mountain[J]. Guangzhou Chemical Industry, 2020, 48(11):101-103. doi: 10.3969/j.issn.1007-1865.2020.11.041
    [8] 张杨,王振兰,范文同,等. 基于裂缝精细评价和力学活动性分析的储层改造方案优选及其在博孜区块的应用[J]. 中国石油勘探,2017,22(6):47-58. doi: 10.3969/j.issn.1672-7703.2017.06.006

    ZHANG Yang, WANG Zhenlan, FAN Wentong, et al. Optimization of reservoir stimulation scheme based on fine fracture evaluation and mechanical activity analysis and its application in Bozi block[J]. China Petroleum Exploration, 2017, 22(6):47-58. doi: 10.3969/j.issn.1672-7703.2017.06.006
    [9] 孙辅庭,佘成学,万利台. Barton标准剖面JRC与独立于离散间距的统计参数关系研究[J]. 岩石力学与工程学报,2014,33(2):3539-3544. doi: 10.13722/j.cnki.jrme.2014.s2.018

    SUN Futing, SHE Chengxue, WAN Litai. Research on relationship between JRC of barton's standard profiles and statistic parameters independent of sampling interval[J]. chinese journal of rock mechanics and engineering, 2014, 33(2):3539-3544. doi: 10.13722/j.cnki.jrme.2014.s2.018
    [10] 李化,黄润秋. 岩石结构面粗糙度系数JRC定量确定方法研究[J]. 岩石力学与工程学报,2014,33(S2):3489-3496. doi: 10.13722/j.cnki.jrme.2014.s2.012

    LI Hua, HUANG Runqiu. Method of quantitative determination of joint roughness coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2):3489-3496. doi: 10.13722/j.cnki.jrme.2014.s2.012
    [11] STEPHEN R BROWN, CHRISTOPHER H,SCHOLZ. Closure of random elastic surfaces in contact[J]. Journal of Geophysical Research, 1985, 90(B7):5531-5545. doi: 10.1029/JB090iB07p05531
    [12] BROWN S R, KRANZ R L. Correlation between the surfaces of natural rock joints[J]. Geophysical Research Letters, 1986, 13(13):1430-1433. doi: 10.1029/GL013i013p01430
    [13] BROWN S R. Fluid flow through rock joints: The effect of surface roughness[J]. Journal of geophysical research, 1987, 92(B2):1337-1347. doi: 10.1029/JB092iB02p01337
    [14] 张敬逸. 粗糙缝面裂缝内固相颗粒运移与滞留行为研究[D]. 成都: 西南石油大学, 2018.

    ZHANG Jingyi .Study on migration and retention behavior of solid particles in cracks with rough fracture surfacesr[D]. Chengdu: Southwest Petroleum University, 2018.
    [15] 曲冠政, 曲占庆, RANDY HAZLETT, 等. 页岩拉张型微裂缝几何特征描述及渗透率计算[J]. 石油勘探与开发, 2016, 43(1): 115-120.

    QU Guanzheng, QU Zhanqing,RANDY HAZLETT,et al. Geometrical description and permeability calculation about shale tensile micro-fractures[J]. Petroleum Exploration and Development. 2016, 43(1): 115-120.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  88
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-02
  • 修回日期:  2023-05-16
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回