留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基离子液体聚合物抗高温抑制剂的作用机理

任妍君 陈欢 杨弘

任妍君,陈欢,杨弘. 氨基离子液体聚合物抗高温抑制剂的作用机理[J]. 钻井液与完井液,2023,40(3):289-295, 302 doi: 10.12358/j.issn.1001-5620.2023.03.002
引用本文: 任妍君,陈欢,杨弘. 氨基离子液体聚合物抗高温抑制剂的作用机理[J]. 钻井液与完井液,2023,40(3):289-295, 302 doi: 10.12358/j.issn.1001-5620.2023.03.002
REN Yanjun, CHEN Huan, YANG Hong.Application of polymer based on amino ionic liquid as anti-high temperature inhibitor and the mechanism[J]. Drilling Fluid & Completion Fluid,2023, 40(3):289-295, 302 doi: 10.12358/j.issn.1001-5620.2023.03.002
Citation: REN Yanjun, CHEN Huan, YANG Hong.Application of polymer based on amino ionic liquid as anti-high temperature inhibitor and the mechanism[J]. Drilling Fluid & Completion Fluid,2023, 40(3):289-295, 302 doi: 10.12358/j.issn.1001-5620.2023.03.002

氨基离子液体聚合物抗高温抑制剂的作用机理

doi: 10.12358/j.issn.1001-5620.2023.03.002
基金项目: 中国石油-西南石油大学创新联合体科技合作项目子课题“深井复杂地层井下复杂情况预防及对策研究”(2020CX040102)
详细信息
    作者简介:

    任妍君,副研究员,博士,现在主要从事油气井工作液技术研究工作。电话17345008031;E-mail:yanjun_Ada@163.com

  • 中图分类号: TE254.4

Application of Polymer Based on Amino Ionic Liquid as Anti-high Temperature Inhibitor and the Mechanism

  • 摘要: 为解决高温地层黏土水化所引起的井壁失稳问题,合成了含双键和氨基的离子液体单体,并将其与丙烯酰胺共聚得到了一种聚合物抑制剂PAN。采用傅里叶变换红外光谱仪对PAN的分子结构进行了表征,并通过浸泡膨胀和搅拌分散、线性膨胀、热滚回收实验评价其抑制性能。结果表明:PAN抑制黏土膨胀与分散的性能优于常用抑制剂KCl、聚醚胺D230及离子液体单体,并且抗温达250 ℃。通过XRD、Zeta电位、润湿性分析了PAN的抑制机理。PAN通过缠绕包覆在黏土颗粒上、压缩双电层、增加黏土颗粒间胶结性及颗粒表面疏水性而起到抑制作用,为新型抗高温强效抑制剂的研发提供理论与技术支持。

     

  • 图  1  抑制剂PAN的分子结构式

    图  2  PAN及其单体IL-NH2的红外谱图

    图  3  钠膨润土压片在不同溶液中浸泡24 h后的膨胀状态

    图  4  膨润土压片在不同溶液中的线性膨胀率

    图  5  在不同溶液中浸泡了24 h的钠膨润土片经搅拌分散、沉降后的状态

    图  6  不同溶液中膨润土颗粒的粒径分布

    图  7  页岩钻屑在不同抑制剂溶液中的滚动回收率

    图  8  IL-NH2、PAN及其与膨润土的复合物的热重曲线

    图  9  不同抑制剂溶液浸泡后膨润土湿样的X射线衍射图

    图  10  膨润土颗粒在不同抑制剂溶液中的Zeta电位

    图  11  PAN及其单体IL-NH2对膨润土颗粒表面润湿性的影响

  • [1] KARPIŃSKI B, SZKODO M. Clay minerals—mineralogy and phenomenon of clay swelling in oil & gas industry[J]. Advances in Materials Science, 2015, 15(1):37-55. doi: 10.1515/adms-2015-0006
    [2] YOU L J, KANG Y L, CHEN Z X, et al. Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72:294-299. doi: 10.1016/j.ijrmms.2014.08.017
    [3] YU M, CHENEVERT M E, SHARMA M M. Chemical-mechanical wellbore instability model for Shales: accounting for solute diffusion[J]. Journal of Petroleum Science and Engineering, 2003, 38(3–4):131-143. doi: 10.1016/S0920-4105(03)00027-5
    [4] BOEK E S, COVENEY P V, COVENEY N T. Monte carlo molecular modeling studies of hydrated Li-, Na-, and K-Smectites: understanding the role of potassium as a clay swelling inhibitor[J]. Journal of the American Chemical Society, 1995, 117(50):12608-12617. doi: 10.1021/ja00155a025
    [5] PATEL A D, STAMATAKIS E,YOUNG S, et al. Advances in inhibitive water-based drilling fluids-can they replace oil-based muds[C]. SPE 106476, 2007.
    [6] GHOLAMI R, ELOCHUKWU H, FAKHARI N, et al. A review on borehole instability in active shale formations: interactions, mechanisms and inhibitors[J]. Earth Science Reviews, 2018, 177(1):2-13.
    [7] CHEN B Q, EVANS J R G. Preferential intercalation in polymer-clay nanocomposite[J]. The Journal of Physical Chemistry, B. Condensed Matter, Materials, Surfaces, Interfaces & Biophysical, 2004, 108(39):14986-14990.
    [8] PATEL A D. Design and development of quaternary amine compounds: shale inhibition with improved environmental profile[R].SPE-121737-MS, 2009.
    [9] AN Y X, YU P Z. A strong inhibition of polyethyleneimine as shale inhibitor in drilling fluid[J]. Journal of Petroleum Science and Engineering, 2018, 161:1-8. doi: 10.1016/j.petrol.2017.11.029
    [10] WANG H, PU X L. Structure and inhibition properties of a new amine-terminated hyperbranched oligomer shale inhibitor[J]. Journal of Applied Polymer Science, 2019, 136(21):45-50.
    [11] CHU Q, LIN L, ZHAO Y, et al. Hyperbranched polyethylenimine modified with silane coupling agent as shale inhibitor for water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2019, 182:920-923.
    [12] 张星辰. 离子液体—从理论基础到研究进展[M]. 北京: 化学工业出版社, 2008.

    ZHANG Xingchen. Ionic liquids— theoretical basis and research progress[M]. Beijing: Chemical Industry Press, 2008.
    [13] BERRY S L, BOLES J L, BRANNON H D, et al. Performance evaluation of ionic liquids as a clay stabilizer and shale inhibitor[C]. SPE-112540-MS, 2008.
    [14] LUO Z H, WANG L X, YU P Z, et al. Experimental study on the application of an ionic liquid as a shale inhibitor and inhibitive mechanism[J]. Applied Clay Science, 2017, 150:267-274. doi: 10.1016/j.clay.2017.09.038
    [15] YANG L L, JIANG G C, SHI Y W, et al. Application of ionic liquid and polymeric ionic liquid as shale hydration inhibitors[J]. Energy Fuel, 2017, 31(4):4308-4317. doi: 10.1021/acs.energyfuels.7b00272
    [16] REN Y J, ZHAI Y F, WU L S, et al. Amine- and alcohol-functionalized ionic liquids: Inhibition difference and application in water-based drilling fluids for wellbore stability[J]. Colloids & Surfaces A: Phys. Eng. Asp, 2021, 609.
    [17] REN Y J, WANG H N, REN Z C, et al. Adsorption of imidazolium-based ionic liquid on Sodium bentonite and its effects on rheological and swelling behaviors[J]. Applied Clay Science, 2019, 182:1-9.
    [18] OLPHEN H V. An Introduction to Clay Colloid Chemistry (2ed Edition)[M]. New York: Interscience Publishers, 1997.
    [19] LIU H B, XIAO H N. Investigation on Intercalation Modification of Sodium-montmorillonite by Cationic Surfactant[J]. Journal of Inorganic Materials, 2012, 27(7):780-784. doi: 10.3724/SP.J.1077.2011.12049
  • 加载中
图(11)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  185
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-02-02
  • 网络出版日期:  2023-07-21
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回