留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虚拟声场用于测量智能音频设备采集指向性的可行性探究

桑晋秋 黄冰 秦朝琪 王学研 陆锡坤 牛锋

桑晋秋,黄冰,秦朝琪,等. 虚拟声场用于测量智能音频设备采集指向性的可行性探究[J]. 计量科学与技术,2023, 67(11): 24-32 doi: 10.12338/j.issn.2096-9015.2023.0297
引用本文: 桑晋秋,黄冰,秦朝琪,等. 虚拟声场用于测量智能音频设备采集指向性的可行性探究[J]. 计量科学与技术,2023, 67(11): 24-32 doi: 10.12338/j.issn.2096-9015.2023.0297
SANG Jinqiu, HUANG Bing, QIN Zhaoqi, WANG Xueyan, LU Xikun, NIU Feng. Exploring Virtual Sound Fields for Directivity Measurement of Smart Audio Devices[J]. Metrology Science and Technology, 2023, 67(11): 24-32. doi: 10.12338/j.issn.2096-9015.2023.0297
Citation: SANG Jinqiu, HUANG Bing, QIN Zhaoqi, WANG Xueyan, LU Xikun, NIU Feng. Exploring Virtual Sound Fields for Directivity Measurement of Smart Audio Devices[J]. Metrology Science and Technology, 2023, 67(11): 24-32. doi: 10.12338/j.issn.2096-9015.2023.0297

虚拟声场用于测量智能音频设备采集指向性的可行性探究

doi: 10.12338/j.issn.2096-9015.2023.0297
基金项目: 国家重点研发计划项目(2021YFF0600202)。
详细信息
    作者简介:

    桑晋秋(1984-),华东师范大学教授,研究方向:空间音频,邮箱:jqsang@mail.ecnu.edu.cn

    通讯作者:

    牛锋(1980-),中国计量科学研究院副研究员,研究方向:声学计量和测量,邮箱:niufeng@nim.ac.cn

  • 中图分类号: TB95

Exploring Virtual Sound Fields for Directivity Measurement of Smart Audio Devices

  • 摘要: 为更好地满足智能音频设备声音采集指向性的测量需求,提高测量装置的灵活性和效率并降低测量装置的硬件成本,探究了利用虚拟声场来测量智能音频设备声音采集指向性的可行性。虚拟声场采用矢量合成的方法合成。通过声场仿真实验对比了虚拟声源和真实物理声源在声场辐射指向性方面的差异。通过实际测量实验对比了一款声像仪在采集定位虚拟声源和真实物理声源时的指向性差异。声场仿真数据结果表明,双扬声器夹角越小,虚拟声源越容易形成与真实物理声源逼近的声场辐射指向性。频率越低,虚拟声场与真实物理声场辐射指向性逼近的甜点区范围越大。实际测量实验结果表明,频率越低,声像仪采集虚拟声场指向性性能逼近采集物理声场指向性性能。双扬声器夹角在22.5°时,声源频率低于2 kHz时,声像仪采集虚拟声场的方位角精度小于3°;声源频率高于4 kHz时,声像仪难以精准采集虚拟声场的声像方位。虚拟声场可在中低频范围内满足音频设备声音采集指向性的测量要求,可用于灵活地设置复杂虚拟声环境来测量智能音频设备声音采集指向性。
  • 图  1  双声道虚拟声重放系统

    Figure  1.  Dual-channel virtual sound reproducing system

    图  2  声源频率为500Hz,双扬声器夹角为45°,虚拟声源位于正前方时的仿真图

    Figure  2.  Simulation diagram at 500Hz source frequency, 45° speaker angle, with the virtual sound source directly in front

    图  3  声源频率为500 Hz,双扬声器夹角为22.5°,虚拟声源位于正前方时的仿真图

    Figure  3.  Simulation diagram at 500 Hz source frequency, 22.5° speaker angle, with the virtual sound source directly in front

    图  4  声源频率为1000 Hz,双扬声器夹角为22.5°,虚拟声源位于正前方时的仿真图

    Figure  4.  Simulation diagram when the sound source frequency is 1000 Hz, the Angle between two speakers is

    图  5  声源频率为2000 Hz,双扬声器夹角为22.5°,虚拟声源位于正前方时的仿真图

    Figure  5.  Simulation diagram at 2000 Hz source frequency, 22.5° speaker angle, with the virtual sound source directly in front

    图  6  声源频率为4000 Hz,双扬声器夹角为22.5°,虚拟声源位于正前方时的仿真图

    Figure  6.  Simulation diagram at 4000 Hz source frequency, 22.5° speaker angle, with the virtual sound source directly in front

    图  7  声源频率为500 Hz,双扬声器夹角为22.5°,虚拟声源与右侧扬声器的夹角为5°时的仿真图

    Figure  7.  Simulation diagram when the sound source frequency is 500 Hz, the Angle between the two speakers is

    图  8  声源频率为500 Hz,双扬声器夹角为22.5°,虚拟声源与右侧扬声器的夹角为10°时的仿真图

    Figure  8.  Simulation diagram at 500 Hz source frequency, 22.5° speaker angle, with a 10° angle between the virtual sound source and the right speaker

    图  9  声源频率为500Hz,双扬声器夹角为22.5°,虚拟声源与右侧扬声器的夹角为15°时的仿真图

    Figure  9.  Simulation diagram at 500Hz source frequency, 22.5° speaker angle, with a 15° angle between the virtual sound source and the right speaker

    图  10  声源频率为500Hz,双扬声器夹角为22.5°,虚拟声源与右侧扬声器的夹角为20°时的仿真图

    Figure  10.  Simulation diagram at 500Hz source frequency, 22.5° speaker angle, with a 20° angle between the virtual sound source and the right speaker

    图  11  声像仪校准前后的声源定位成像图

    Figure  11.  Image of sound source positioning before and after calibration with the acoustic camera

    图  12  频率为500 Hz且虚拟声源距离右扬声器夹角分别为5°、10°、15°、20°的合成声场成像

    Figure  12.  Synthetic sound field imaging at 500 Hz with virtual sound source angles of 5°, 10°, 15°, and 20° relative to the right speaker

    图  13  频率为1 kHz且虚拟声源距离右扬声器夹角分别为5°、10°、15°、20°的合成声场成像

    Figure  13.  Synthetic sound field imaging at 1 kHz with virtual sound source angles of 5°, 10°, 15°, and 20° relative to the right speaker

    图  14  频率为2kHz且虚拟声源距离右扬声器夹角分别为5°、10°、15°、20°的合成声场成像

    Figure  14.  Synthetic sound field imaging at 2kHz with virtual sound source angles of 5°, 10°, 15°, and 20° relative to the right speaker

  • [1] KUHN J, VOGT P. Analyzing acoustic phenomena with a smartphone microphone[J]. The Physics Teacher, 2013, 51(2): 118-119. doi: 10.1119/1.4775539
    [2] ALEX C, JOSE K M, JOSEPH A. Sound localization and Visualization device[C]. proceedings of the 2013 IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2013.
    [3] INOUE A, IKEDA Y, YATABE K, et al. Visualization system for sound field using see-through head-mounted display[J]. Acoustical Science and Technology, 2019, 40(1): 1-11. doi: 10.1250/ast.40.1
    [4] HAWLEY S H, MCCLAIN R E. Visualizing sound directivity via smartphone sensors[J]. The Physics Teacher, 2018, 56(2): 72-74. doi: 10.1119/1.5021430
    [5] BERNFELD B. Attempts for better understanding of the directional stereophonic listening mechanism [C]. Proceedings of the Audio Engineering Society Convention 44. Audio Engineering Society, 1973.
    [6] GERZON M A. Surround-sound psychoacoustics[J]. Wireless World, 1974, 80(1468): 483-486.
    [7] KYRIAKAKIS C, TSAKALIDES P, HOLMAN T. Surrounded by sound[J]. IEEE Signal processing magazine, 1999, 16(1): 55-66. doi: 10.1109/79.743868
    [8] SERGI G. Knocking at the door of cinematic artifice: Dolby Atmos, challenges and opportunities[J]. The New Soundtrack, 2013, 3(2): 107-121. doi: 10.3366/sound.2013.0041
    [9] HAMASAKI K, NISHIGUCHI T, OKUMURA R, et al. A 22.2 multichannel sound system for ultrahigh-definition TV (UHDTV)[J]. SMPTE Motion Imaging Journal, 2008, 117(3): 40-49. doi: 10.5594/J15119
    [10] BOSUN X, XINGFU X. Analyse and sound image Iocalization experiment on multi-channel plannar surround sound system[J]. 声学学报, 1996, 21(S1): 648-660.
    [11] 谢兴甫. 全景(立体)声的4-3-4变换与N(≥3)通路重发[J]. 华南工学院学报, 1978(2): 54-70.
    [12] BAMFORD J S, VANDERKOOY J. Ambisonic sound for us[C]. proceedings of the Audio Engineering Society Convention 99. Audio Engineering Society, 1995.
    [13] FRANK M. Phantom sources using multiple loudspeakers in the horizontal plane [M]. na, 2013.
    [14] WARD D B, ABHAYAPALA T D. Reproduction of a plane-wave sound field using an array of loudspeakers[J]. IEEE Transactions on speech and audio processing, 2001, 9(6): 697-707. doi: 10.1109/89.943347
    [15] FAVROT S, MARSCHALL M, KäSBACH J, et al. Mixed-order Ambisonics recording and playback for improving horizontal directionality [C]. proceedings of the Audio Engineering Society Convention 131. Audio Engineering Society, 1997.
    [16] DANIEL J. Acoustic field representation, application to the transmission and the reproduction of complex sound environments in a multimedia context[J]. Ph D Thesis, 2000, 2000: 1.
    [17] DANIEL J. Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format[C]. proceedings of the Audio Engineering Society Conference: 23rd International Conference: Signal Processing in Audio Recording and Reproduction. Audio Engineering Society, 2003.
    [18] GERZON M A. Periphony: With-height sound reproduction[J]. Journal of the audio engineering society, 1973, 21(1): 2-10.
    [19] AHRENS J, SPORS S. An analytical approach to sound field reproduction using circular and spherical loudspeaker distributions[J]. Acta Acustica united with Acustica, 2008, 94(6): 988-999. doi: 10.3813/AAA.918115
    [20] WEI T, SANG J, ZHENG C, et al. Near-field compensated higher-order Ambisonics using a virtual source panning method[C]. proceedings of the Audio Engineering Society Convention 145. Audio Engineering Society, 2018.
    [21] 魏彤, 吴彦琴, 桑晋秋, 等. 双扬声器近场声源重放实验研究[J]. 应用声学, 2020, 39(2): 11.
    [22] BOONE M M, VERHEIJEN E N, VAN TOL P F. Spatial sound-field reproduction by wave-field synthesis[J]. Journal of the Audio Engineering Society, 1995, 43(12): 1003-1012.
    [23] BERKHOUT A J, DE VRIES D, VOGEL P. Acoustic control by wave field synthesis[J]. The Journal of the Acoustical Society of America, 1993, 93(5): 2764-2778. doi: 10.1121/1.405852
    [24] PULKKI V. Virtual sound source positioning using vector base amplitude panning[J]. Journal of the audio engineering society, 1997, 45(6): 456-466.
    [25] MENG R, XIANG J, SANG J, et al. Investigation of an MAA test with virtual sound synthesis[J]. Frontiers in Psychology, 2021, 12: 656052. doi: 10.3389/fpsyg.2021.656052
    [26] PULKKI V. Localization of amplitude-panned virtual sources II: Two-and three-dimensional panning[J]. Journal of the Audio Engineering Society, 2001, 49(9): 753-767.
    [27] PULKKI V, KARJALAINEN M. Multichannel audio rendering using amplitude panning [dsp applications][J]. IEEE Signal Processing Magazine, 2008, 25(3): 118-122. doi: 10.1109/MSP.2008.918025
    [28] PULKKI V. Spatial sound generation and perception by amplitude panning techniques [M]. Helsinki : Helsinki University of Technology, 2001.
    [29] PULKKI V, KARJALAINEN M. Localization of amplitude-panned virtual sources I: stereophonic panning[J]. Journal of the Audio Engineering Society, 2001, 49(9): 739-52.
    [30] 王金山. 基于听音者声场扰动特性的虚拟声像重建方法研究 [D]. 武汉: 武汉大学, 2018.
  • 加载中
图(14)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  30
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 录用日期:  2023-11-25
  • 修回日期:  2023-12-11
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2023-11-18

目录

    /

    返回文章
    返回