JOURNAL OF LIGHT INDUSTRY

CN 41-1437/TS  ISSN 2096-1553

碳酸锰纳米片阵列的制备及其电化学性能研究

张凯扬 肖元化 吴诗德 苏当成 方少明

张凯扬, 肖元化, 吴诗德, 等. 碳酸锰纳米片阵列的制备及其电化学性能研究[J]. 轻工学报, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
引用本文: 张凯扬, 肖元化, 吴诗德, 等. 碳酸锰纳米片阵列的制备及其电化学性能研究[J]. 轻工学报, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
ZHANG Kaiyang, XIAO Yuanhua, WU Shide, et al. Preparation and electrochemical properties of manganese carbonate nanoplate arrays[J]. Journal of Light Industry, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
Citation: ZHANG Kaiyang, XIAO Yuanhua, WU Shide, et al. Preparation and electrochemical properties of manganese carbonate nanoplate arrays[J]. Journal of Light Industry, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016

碳酸锰纳米片阵列的制备及其电化学性能研究

    作者简介: 张凯扬(1995—),男,河北省晋州市人,郑州轻工业大学硕士研究生,主要研究方向为电化学能源材料。E-mail:744603481@qq.com;
  • 基金项目: 国家自然科学基金项目(U1904190)
    河南省自然科学基金项目(212300410091)

  • 中图分类号: TM912;TB321

Preparation and electrochemical properties of manganese carbonate nanoplate arrays

  • Received Date: 2021-04-14
    Accepted Date: 2021-05-25

    CLC number: TM912;TB321

  • 摘要: 为了提高以锰基材料做正极的水系锌离子电池的工作电压,通过溶剂热法一步实现超薄MnCO3纳米片阵列(NA)在泡沫镍基底上的生长,并采用X射线衍射(XRD)、扫描电子显微镜、透射电子显微镜、电池性能测试仪等对其结构、形貌和电化学性能进行了表征。结果表明,该MnCO3纳米片厚度约为30 nm,高度约为500 nm;将该MnCO3 NA直接应用于锌离子电池,在碱性电解液体系中,展现出1.73 V的高工作电压,在0.1 A/g的电流密度下放电比容量达到255.41 mAh/g,且在0.5 A/g的电流密度下进行270次充放电循环后,容量保持率约为83.1%。基于不同电位状态下的非原位XRD和光电子能谱XPS测试表明,该电极的储锌机制为Mn2+转变为Mn3+的单相反应。
    1. [1]

      ZENG X H,HAO J N,WANG Z J,et al.Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J].Energy Storage Materials,2019,20:410-437.

    2. [2]

      常立民,林丽,聂平.水系锌离子电池:金属锌负极研究进展[J].吉林师范大学学报(自然科学版),2021,42(3): 8-15.

    3. [3]

      张涛,周坤蕃,阳思念,等. Al3+预嵌(NH4)2V10O25·8H2O正极材料在水系锌离子电池的应用[J].精细化工,2022,39(2):282-287.

    4. [4]

      戴宇航,甘志伟,阮雨杉,等.水系锌离子电池及关键材料研究进展[J]. 硅酸盐学报,2021,49(7):1323-1336.

    5. [5]

      SELVAKUMARAN D,PAN A Q,LIANG S Q,et al.A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J].Journal of Materials Chemistry A,2019,7(31):18209-18236.

    6. [6]

      KONAROV A,VORONINA N,JO J H,et al.Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J].ACS Energy Letters,2018,3(10):2620-2640.

    7. [7]

      SUN T J,NIAN Q S,ZHENG S B,et al.Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery[J].Small,2020,16(17):2000597.

    8. [8]

      翟小亮,柳勇,王飞,等.水基锌离子电池钒基正极材料研究进展[J].化学工业与工程,2020,37(5):37-45.

    9. [9]

      衡永丽,谷振一,郭晋芝,等.水系锌离子电池用钒基正极材料的研究进展[J].物理化学学报, 2021,37(3):17-32.

    10. [10]

      LUO Y W,ZHENG F P,LIU L J,et al.A high-power aqueous zinc-organic radical battery with tunable operating voltage triggered by selected anions[J].ChemSusChem,2020,13(9):2239-2244.

    11. [11]

      TIE Z W,LIU L J,DENG S Z,et al.Proton insertion chemistry of a zinc-organic battery[J]. Angewandte Chemie International Edition, 2020, 59(12): 4920-4924.

    12. [12]

      HUANG J H,GUO Z W,MA Y Y,et al.Recent progress of rechargeable batteries using mild aqueous electrolytes[J].Small Methods,2019,3(1):1800272.

    13. [13]

      陈均桄.水系锌离子二次电池正极锰基化合物研究进展[J].南宁师范大学学报(自然科学版),2020, 37(1): 75-80.

    14. [14]

      周世昊,吴贤文,向延鸿,等.水系锌离子电池锰基正极材料[J].化学进展, 2021,33(4):649-669.

    15. [15]

      WANG X W,WANG F X,WANG L Y,et al.An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior[J].Advanced Materials,2016,28(24):4904-4911.

    16. [16]

      LIU D,HUR S H,CHUNG J S,et al.Fabrication of g-C3N4 quantum Dots/MnCO3 nanocomposite on carbon cloth for flexible supercapacitor electrode[J].Applied Sciences,2020,10(21):7927.

    17. [17]

      KARUPPAIAH M,SAKTHIVEL P,ASAITHAMBI S,et al.Formation of one dimensional nanorods with microsphere of MnCO3 using Ag as dopant to enhance the performance of pseudocapacitors[J].Materials Chemistry and Physics,2019,228:1-8.

    18. [18]

      LYU Y N,DONG G X,KANG J R,et al.MnF2-Ni and MnCO3-Ni derived from the same raw materials for high-performance supercapacitor[J].Materials Letters,2018,215:125-128.

    19. [19]

      FENG X Y,SHEN Q,SHI Y C,et al.One-pot hydrothermal synthesis of core-shell structured MnCO3@C as anode material for lithium-ion batteries with superior electrochemical performance[J].Electrochimica Acta,2016,220:391-397.

    20. [20]

      CHEN H,YAN Z,LIU X Y,et al.Rational design of microsphere and microcube MnCO3@MnO2 heterostructures for supercapacitor electrodes[J]. Journal of Power Sources,2017,353:202-209.

    21. [21]

      JANA M,SAMANTA P,CHANDRA MURMU N,et al.Morphology controlled synthesis of MnCO3-RGO materials and their supercapacitor applications[J].Journal of Materials Chemistry A,2017,5(25):12863-12872.

    22. [22]

      QIU W D,LI Y,YOU A,et al.High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth[J].Journal of Materials Chemistry A,2017,5(28):14838-14846.

    23. [23]

      RAJENDIRAN R,MUTHUCHAMY N,PARK K H,et al.Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions[J].Journal of Colloid and Interface Science,2020,566:224-233.

    24. [24]

      LI T,LI M Q,LI H,et al.The construction of a novel rechargeable Zn(OH)42- ion battery[J].Materials Letters,2020,273:127989.

    25. [25]

      GAO X,WU H W,LI W J,et al.H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery[J].Small,2020,16(5):1905842.

    26. [26]

      TAN Q Y,LI X T,ZHANG B,et al.Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous Zn-ion battery[J].Advanced Energy Materials,2020,10(38):2001050.

    27. [27]

      ISLAM S,ALFARUQI M H,SONG J,et al.Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J].Journal of Energy Chemistry,2017,26(4):815-819.

    28. [28]

      YUAN T C,ZHANG J X,PU X J,et al.Novel alkaline Zn/Na0.44MnO2 dual-ion battery with a high capacity and long cycle lifespan[J].ACS Applied Materials & Interfaces,2018,10(40):34108-34115.

    29. [29]

      SEO J K,SHIN J,CHUNG H,et al.Intercalation and conversion reactions of nanosized β-MnO2 cathode in the secondary Zn/MnO2 alkaline battery[J].The Journal of Physical Chemistry C,2018,122(21):11177-11185.

    30. [30]

      PAN J Q,SUN Y,WANG Z H,et al.Mn3O4 doped with nano-NaBiO3: A high capacity cathode material for alkaline secondary batteries[J].Journal of Alloys and Compounds,2009,470(1/2):75-79.

    31. [31]

      WEI T Y,LI Q,YANG G Z,et al.Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts[J].Journal of Materials Chemistry A,2018,6(41):20402-20410.

    32. [32]

      WAN F,ZHANG L L,DAI X,et al.Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J].Nature Communications,2018,9(1):1-11.

    33. [33]

      CHAI H J,ZHANG Z M,ZHOU Y Q,et al.Roles of intrinsic Mn3+ sites and lattice oxygen in mechanochemical debromination and mineralization of decabromodiphenyl ether with manganese dioxide[J].Chemosphere,2018,207:41-49.

    34. [34]

      KARUPPAIAH M,AKILAN R,SAKTHIVEL P,et al.Synthesis of self-assembled micro/nano structured manganese carbonate for high performance, long lifespan asymmetric supercapacitors and investigation of atomic-level intercalation properties of OH- ions via first principle calculation[J].Journal of Energy Storage,2020,27:101138.

    35. [35]

      CAO Z X,DING Y M,ZHANG J,et al.Submicron peanut-like MnCO3 as an anode material for lithium ion batteries[J]. RSC Advances,2015,5(69):56299-56303.

    36. [36]

      史金涛,余传军,李倩.锂离子电池在不同倍率循环的阻抗特性研究[J].电源技术, 2021,45(11):1409-1411.

    37. [37]

      庄全超,杨梓,张蕾,等.锂离子电池的电化学阻抗谱分析研究进展[J].化学进展, 2020,32(6):761-791.

    38. [38]

      TANG Y F,CHEN S J,CHEN T,et al.Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors[J].Journal of Materials Chemistry A,2017,5(8):3923-3931.

    39. [39]

      ZHANG Y Q,TAO L,XIE C,et al.Defect engineering on electrode materials for rechargeable batteries[J].Advanced Materials,2019,32(7):1905923.

    1. [1]

      张志平宋洋洋王秋领王清福龚贵平付瑜锋陈高 . 基于离子液体的菌藻类胡萝卜素提取工艺研究. 轻工学报, 2024, 39(2): 19-27. doi: 10.12187/2024.02.003

  • 加载中
计量
  • PDF下载量:  17
  • 文章访问数:  795
  • 引证文献数: 0
文章相关
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-05-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
张凯扬, 肖元化, 吴诗德, 等. 碳酸锰纳米片阵列的制备及其电化学性能研究[J]. 轻工学报, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
引用本文: 张凯扬, 肖元化, 吴诗德, 等. 碳酸锰纳米片阵列的制备及其电化学性能研究[J]. 轻工学报, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
ZHANG Kaiyang, XIAO Yuanhua, WU Shide, et al. Preparation and electrochemical properties of manganese carbonate nanoplate arrays[J]. Journal of Light Industry, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016
Citation: ZHANG Kaiyang, XIAO Yuanhua, WU Shide, et al. Preparation and electrochemical properties of manganese carbonate nanoplate arrays[J]. Journal of Light Industry, 2022, 37(2): 119-126. doi: 10.12187/2022.02.016

碳酸锰纳米片阵列的制备及其电化学性能研究

    作者简介:张凯扬(1995—),男,河北省晋州市人,郑州轻工业大学硕士研究生,主要研究方向为电化学能源材料。E-mail:744603481@qq.com
  • 1. 郑州轻工业大学 材料与化学工程学院, 河南 郑州 450001;
  • 2. 河南省表界面科学重点实验室, 河南 郑州 450001;
  • 3. 郑州大学 材料科学与工程学院, 河南 郑州 450001
基金项目:  国家自然科学基金项目(U1904190)河南省自然科学基金项目(212300410091)

摘要: 为了提高以锰基材料做正极的水系锌离子电池的工作电压,通过溶剂热法一步实现超薄MnCO3纳米片阵列(NA)在泡沫镍基底上的生长,并采用X射线衍射(XRD)、扫描电子显微镜、透射电子显微镜、电池性能测试仪等对其结构、形貌和电化学性能进行了表征。结果表明,该MnCO3纳米片厚度约为30 nm,高度约为500 nm;将该MnCO3 NA直接应用于锌离子电池,在碱性电解液体系中,展现出1.73 V的高工作电压,在0.1 A/g的电流密度下放电比容量达到255.41 mAh/g,且在0.5 A/g的电流密度下进行270次充放电循环后,容量保持率约为83.1%。基于不同电位状态下的非原位XRD和光电子能谱XPS测试表明,该电极的储锌机制为Mn2+转变为Mn3+的单相反应。

English Abstract

参考文献 (39) 相关文章 (1)

目录

/

返回文章