留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

荧光纳米探针在肝癌早期诊疗的研究进展

熊彦凌 李菁

熊彦凌, 李菁. 荧光纳米探针在肝癌早期诊疗的研究进展[J]. 分子影像学杂志, 2023, 46(3): 543-547. doi: 10.12122/j.issn.1674-4500.2023.03.29
引用本文: 熊彦凌, 李菁. 荧光纳米探针在肝癌早期诊疗的研究进展[J]. 分子影像学杂志, 2023, 46(3): 543-547. doi: 10.12122/j.issn.1674-4500.2023.03.29
XIONG Yanling, LI Jing. Research progress of fluorescent nanoprobes in early diagnosis and treatment of liver cancer[J]. Journal of Molecular Imaging, 2023, 46(3): 543-547. doi: 10.12122/j.issn.1674-4500.2023.03.29
Citation: XIONG Yanling, LI Jing. Research progress of fluorescent nanoprobes in early diagnosis and treatment of liver cancer[J]. Journal of Molecular Imaging, 2023, 46(3): 543-547. doi: 10.12122/j.issn.1674-4500.2023.03.29

荧光纳米探针在肝癌早期诊疗的研究进展

doi: 10.12122/j.issn.1674-4500.2023.03.29
基金项目: 

湖南省临床医学研究中心(湖南省中医肿瘤临床医学研究中心) 2021SK4023

湖南省临床医疗技术创新引导项目 2021SK51410

湖南省卫生健康委科研重点项目 C202203108338

湖南省教育厅优秀青年项目 21B0365

长沙市自然科学基金 kq2202453

详细信息
    作者简介:

    熊彦凌,在读本科生,E-mail: 2465980358@qq.com

    通讯作者:

    李菁,博士,副主任医师,E-mail: lileekim_495@hnucm.edu.cn

Research progress of fluorescent nanoprobes in early diagnosis and treatment of liver cancer

  • 摘要: 肝癌的早期诊疗一直是医学领域试图攻克的难题,而纳米技术的发展为肝癌早期诊疗带来新的机遇。目前,荧光纳米探针凭借其良好的靶向性及高敏感度等优势已广泛应用于肝癌成像与诊疗领域。本文将分别从特异性靶向肝癌探针、近红外荧光成像及多模态荧光成像、诊疗一体化三个方面归纳总结荧光纳米探针在肝癌早期诊疗领域的研究进展,提出纳米探针发展亟待解决的问题,并对诊疗一体化纳米体系在肝癌中的应用进行预测。

     

  • [1] Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma [J]. Lancet, 2022, 400(10360): 1345-62. doi: 10.1016/S0140-6736(22)01200-4
    [2] Li MY, Zhao J, Chu HQ, et al. Light-activated nanoprobes for biosensing and imaging[J]. Adv Mater, 2019, 31(45): e1804745. doi: 10.1002/adma.201804745
    [3] Das CGA, Kumar VG, Dhas TS, et al. Nanomaterials in anticancer applications and their mechanism of action-A review[J]. Nanomed Nanotechnol Biol Med, 2023, 47: 102613. doi: 10.1016/j.nano.2022.102613
    [4] Tee JK, Yip LX, Tan ES, et al. Nanoparticles'interactions with vasculature in diseases[J]. Chem Soc Rev, 2019, 48(21): 5381-407. doi: 10.1039/C9CS00309F
    [5] Gao ZY, Ma TC, Zhao EY, et al. Small is smarter: nano MRI contrast agents-advantages and recent achievements[J]. Small, 2016, 12 (5): 556-76. doi: 10.1002/smll.201502309
    [6] de Boer E, Warram JM, Tucker MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas[J]. Sci Rep, 2015, 5: 10169. doi: 10.1038/srep10169
    [7] van Duijnhoven SMJ, Robillard MS, Langereis S, et al. Bioresponsive probes for molecular imaging: concepts and in vivo applications[J]. Contrast Media Mol Imaging, 2015, 10(4): 282-308. doi: 10.1002/cmmi.1636
    [8] Hatfield MJ, Umans RA, Hyatt JL, et al. Carboxylesterases: general detoxifying enzymes[J]. Chem Biol Interact, 2016, 259(Pt B): 327- 31.
    [9] Cao WQ, Sharma M, Imam R, et al. Study on diagnostic values of astrocyte elevated gene 1 (AEG-1) and glypican 3 (GPC- 3) in hepatocellular carcinoma[J]. Am J Clin Pathol, 2019, 152(5): 647- 55. doi: 10.1093/ajcp/aqz086
    [10] 李佳, 李勇, 占美晓, 等. 近红外二区成像中通过靶向磷脂酰肌醇蛋白聚糖-3早期诊断肝癌转移实验研究[J]. 介入放射学杂志, 2020, 29 (6): 591-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JRFS202006014.htm
    [11] Chen PY, Kuang W, Zheng Z, et al. Carboxylesterase-cleavable biotinylated nanoparticle for tumor-dual targeted imaging[J]. Theranostics, 2019, 9(24): 7359-69. doi: 10.7150/thno.37625
    [12] Jun SY, Yoon HR, Yoon JY, et al. The human TOR signaling regulator is the key indicator of liver cancer patients' overall survival: TIPRL/LC3/CD133/CD44 as potential biomarkers for early liver cancers[J]. Cancers, 2021, 13(12): 2925. doi: 10.3390/cancers13122925
    [13] 王国庆, 陈兆鹏, 陈令新. 基于核酸适配体和纳米粒子的光学探针[J]. 化学进展, 2010, 22(S1): 489-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2010Z1030.htm
    [14] Lo CWS, Chan CKW, Yu JQ, et al. Development of CD44E/s dualtargeting DNA aptamer as nanoprobe to deliver treatment in hepatocellular carcinoma[J]. Nanotheranostics, 2022, 6(2): 161-74. doi: 10.7150/ntno.62639
    [15] Sun D, Lu J, Zhang L, Chen Z. Aptamer- based electrochemical cytosensors for tumor cell detection in cancer diagnosis: a review [J]. Anal Chimica Acta, 2019, 1082: 1-17. doi: 10.1016/j.aca.2019.07.054
    [16] Kesharwani P, Chadar R, Sheikh A, et al. CD44-targeted nanocarrier for cancer therapy[J]. Front Pharmacol, 2022, 12: 800481. doi: 10.3389/fphar.2021.800481
    [17] Wei Z, Wu Y, Zhao Y, et al. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging[J]. Anal Chimica Acta, 2016, 938: 156-64. doi: 10.1016/j.aca.2016.07.037
    [18] Hu ZX, Tan JT, Lai ZQ, et al. Aptamer combined with fluorescent silica nanoparticles for detection of hepatoma cells[J]. Nanoscale Res Lett, 2017, 12(1): 96. doi: 10.1186/s11671-017-1890-6
    [19] Sun D, Lu J, Luo Z, et al. Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification[J]. Biosens Bioelectron, 2018, 120: 8-14. doi: 10.1016/j.bios.2018.08.002
    [20] Zhang GQ, Zhong LP, Yang N, et al. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer[J]. World J Gastroenterol, 2019, 25(26): 3359-69. doi: 10.3748/wjg.v25.i26.3359
    [21] Yan HH, Gao XH, Zhang YF, et al. Imaging tiny hepatic tumor xenografts via endoglin-targeted paramagnetic/optical nanoprobe [J]. ACS Appl Mater Interfaces, 2018, 10(20): 17047-57. doi: 10.1021/acsami.8b02648
    [22] 杨静, 曹宪炳, 连镇炎, 等. 微小肝癌早期诊断关键分子的研究进展[J]. 分子影像学杂志, 2020, 43(4): 621-4. doi: 10.12122/j.issn.1674-4500.2020.04.14
    [23] Locatelli E, Li Y, Monaco I, et al. A novel theranostic gold nanorods-and Adriamycin- loaded micelle for EpCAM targeting, laser ablation, and photoacoustic imaging of cancer stem cells in hepatocellular carcinoma[J]. Int J Nanomed, 2019, 14: 1877-92. doi: 10.2147/IJN.S197265
    [24] Chalermchai P, Sangsirin S, Yanee K. Development of targeted multimodal imaging agent in ionizing radiation-free approach for visualizing hepatocellular carcinoma cells[J]. Sens Actuat B Chem, 2017, 245: 683-94. doi: 10.1016/j.snb.2017.02.012
    [25] Hong GS, Antaris AL, Dai HJ. Near- infrared fluorophores for biomedical imaging[J]. Nat Biomed Eng, 2017, 1: 10. doi: 10.1038/s41551-016-0010
    [26] Yang YZ, Xiao N, Cen YY, et al. Dual-emission ratiometric nanoprobe for visual detection of Cu(Ⅱ) and intracellular fluorescence imaging[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 223: 117300. doi: 10.1016/j.saa.2019.117300
    [27] Tang YF, Pei F, Lu XM, et al. Recent advances on activatable NIRⅡ fluorescence probes for biomedical imaging[J]. Adv Optical Mater, 2019, 7(21): 1900917. doi: 10.1002/adom.201900917
    [28] 苏哲, 秦文璟, 白磊, 等. 殝近红外二区荧光探针在生物成像领域的研究进展[J]. 应用化学, 2019, 36(2): 123-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHX201902016.htm
    [29] 石磊, 田昊, 张希恬, 等. 光声成像技术在早期肝癌诊断和治疗中的应用[J]. 分子影像学杂志, 2019, 42(2): 145-50. doi: 10.12122/j.issn.1674-4500.2019.02.01
    [30] Guan TP, Shang WT, Li H, et al. From detection to resection: photoacoustic tomography and surgery guidance with indocyanine green loaded gold nanorod@liposome core-shell nanoparticles in liver cancer[J]. Bioconjug Chem, 2017, 28(4): 1221-8. doi: 10.1021/acs.bioconjchem.7b00065
    [31] Ren Y, He SQ, Huttad L, et al. An NIR- Ⅱ/MR dual modal nanoprobe for liver cancer imaging[J]. Nanoscale, 2020, 12(21): 11510-7. doi: 10.1039/D0NR00075B
    [32] 柳梅, 冷德文, 范学朋. 多模态分子影像的研究进展[J]. 中国医学影像学杂志, 2018, 26(6): 471-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYZ201806019.htm
    [33] 李延坤. 多模态纳米靶向探针通过MR成像和生物光学成像对肝癌的诊断研究[D]. 锦州: 锦州医科大学, 2019.
    [34] 胡敏. 多模态靶向纳米探针在微小肝癌的诊断及光热治疗的实验研究[D]. 广州: 南方医科大学, 2018.
    [35] 赵蔓, 张文远, 王娜, 等. 基于纳米材料的光/声辅助疗法在肿瘤治疗中的应用[J]. 医学综述, 2022, 28(4): 724-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZS202204018.htm
    [36] 何玉芳. 具有AIE性能及磁性对比增强作用的诊疗纳米粒子用于肝癌双模态成像研究[D]. 广州: 华南理工大学, 2020.
    [37] 李炯. 膜衍生化纳米材料在肝癌诊疗中的研究[D]. 福州: 福建农林大学, 2019.
    [38] Kumari S, Sharma N, Sahi SV. Advances in cancer therapeutics: conventional thermal therapy to nanotechnology- based photothermal therapy[J]. Pharmaceutics, 2021, 13(8): 1174. doi: