留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
x

基于金属钆-儿茶酚构建的纳米影像探针在小鼠正常器官的双模态成像

刘杰 王玉柱

刘杰, 王玉柱. 基于金属钆-儿茶酚构建的纳米影像探针在小鼠正常器官的双模态成像[J]. 分子影像学杂志, 2021, 44(6): 905-910. doi: 10.12122/j.issn.1674-4500.2021.06.04
引用本文: 刘杰, 王玉柱. 基于金属钆-儿茶酚构建的纳米影像探针在小鼠正常器官的双模态成像[J]. 分子影像学杂志, 2021, 44(6): 905-910. doi: 10.12122/j.issn.1674-4500.2021.06.04
LIU Jie, WANG Yuzhu. Dual-modal imaging of nano-imaging probes based on metal gadolinium-catechol in mice[J]. Journal of Molecular Imaging, 2021, 44(6): 905-910. doi: 10.12122/j.issn.1674-4500.2021.06.04
Citation: LIU Jie, WANG Yuzhu. Dual-modal imaging of nano-imaging probes based on metal gadolinium-catechol in mice[J]. Journal of Molecular Imaging, 2021, 44(6): 905-910. doi: 10.12122/j.issn.1674-4500.2021.06.04

基于金属钆-儿茶酚构建的纳米影像探针在小鼠正常器官的双模态成像

doi: 10.12122/j.issn.1674-4500.2021.06.04
基金项目: 

重庆市自然科学基金 cstc2019jcyj-msxmX0116

详细信息
    作者简介:

    刘杰,主治医师,E-mail: 315568652@qq.com

    通讯作者:

    王玉柱,主管技师,E-mail: yzwang_1983@163.com

Dual-modal imaging of nano-imaging probes based on metal gadolinium-catechol in mice

  • 摘要:   目的  研究基于金属钆-儿茶酚构建的纳米影像探针(TA-Gd@RB)在小鼠体内正常器官的磁共振/荧光(MRI/FI)双模态成像。  方法  首先将TA-Gd@RB在体外进行弛豫率的测定;其次选取正常KM小鼠20只,随机分为4组(5只/组):第1组注射TAGd@RB,第2组注射DTPA-Gd,分别进行小鼠的肝、膀胱MRI扫描,将TA-Gd@RB组在体内的增强效果与DTPA-Gd进行对比;第3组再次注射TA-Gd@RB,第4组注射PBS,分别进行小鼠活体、离体荧光成像,观察TA-Gd@RB作为荧光材料的成像效果。  结果  TA-Gd@RB弛豫率为6.94 mmol-1s-1,是临床DTPA-Gd弛豫率4.09 mmol-1s-1的1.7倍;同时,TA-Gd@RB较临床用DTPAGd在小鼠肝和膀胱有着更好的增强效果、较高的增强幅度以及长时间的强化持续窗口。荧光成像结果显示TA-Gd@RB在体内主要器官均取得良好荧光成像效果,且与MRI结果相符合。  结论  TA-Gd@RB在体外有着较高的弛豫效能;TA-Gd@RB进行MRI和FI的体内、外成像效果均佳,具有优异的FI/MRI双模态成像性能。

     

  • 图  1  TA-Gd@RB合成示意图

    Figure  1.  Synthetic schematic diagram of TA-Gd@RB.

    图  2  MR成像结果

    体外弛豫率T1加权MRI图像(A)和数值(B);注射TA-Gd@RB and DTPA-Gd后肝(红色箭头)和膀胱(黄色箭头)的MRI:CE:T1加权图像;DF:相对信号增强比值.

    Figure  2.  Results of magnetic resonance imaging.

    图  3  在不同时间点静脉注射TA-Gd@RB的小鼠体内荧光成像

    A: 对照组; B~G: 实验组.

    Figure  3.  In vivo fluorescence imaging of mice with intravenous injection of the TA-Gd@RB at different time points.

    图  4  在不同时间点静脉注射TA-Gd@RB对小鼠进行实时离体荧光成像

    Figure  4.  Real-time ex vivo fluorescence imaging of mice with intravenous injection of the TA-Gd@RB at different time points.

  • [1] Yuan JC, Miao CP, Peng FY, et al. Synthesis and characterization of poly(HPMA)-APMA-DTPA-99mTc for imaging-guided drug delivery in hepatocellular carcinoma[J]. J Appl Polym Sci, 2013, 127(6): 4549-56. doi: 10.1002/app.38065
    [2] Zhao H, Zhao H, Jiao Y, et al. Biosynthetic molecular imaging probe for tumor-targeted dual-modal fluorescence/magnetic resonance imaging[J]. Biomaterials, 2020, 256: 120220. doi: 10.1016/j.biomaterials.2020.120220
    [3] Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment [J]. Adv Drug Deliv Rev, 2017, 113: 24-48. doi: 10.1016/j.addr.2016.07.012
    [4] Bian D, Qin L, Lin WJ, et al. Magnetic resonance (MR) safety and compatibility of a novel iron bioresorbable scaffold[J]. Bioact Mater, 2020, 5(2): 260-74. doi: 10.1016/j.bioactmat.2020.02.011
    [5] Lee DE, Koo H, Sun IC, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis[J]. Chem Soc Rev, 2012, 41 (7): 2656-72. doi: 10.1039/C2CS15261D
    [6] He X, Luo Q, Zhang J, et al. Gadolinium-doped carbon dots as nanotheranostic agents for MR/FL diagnosis and gene delivery[J]. Nanoscale, 2019, 11(27): 12973-82. doi: 10.1039/C9NR03988K
    [7] Yu CY, Xuan TT, Chen YW, et al. Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe[J]. J Alloys Compd, 2016, 688: 611-9. doi: 10.1016/j.jallcom.2016.07.226
    [8] Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies[J]. Clin Radiol, 2010, 65(7): 500-16. doi: 10.1016/j.crad.2010.03.011
    [9] Li K, Ding D, Zhao QL, et al. Biocompatible organic dots with aggregation-induced emission for in vitro and in vivo fluorescence imaging[J]. Sci China Chem, 2013, 56(9): 1228-33. doi: 10.1007/s11426-013-4936-3
    [10] Margolis DJ, Hoffman JM, Herfkens RJ, et al. Molecular imaging techniques in body imaging[J]. Radiology, 2007, 245(2): 333-56. doi: 10.1148/radiol.2452061117
    [11] Jo JH, Kim JH, Lee SH, et al. Photostability enhancement of InP/ZnS quantum dots enabled by In2O3 overcoating[J]. J Alloys Compd, 2015, 647: 6-13. doi: 10.1016/j.jallcom.2015.05.245
    [12] Abdukayum A, Yang CX, Zhao Q, et al. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo[J]. Anal Chem, 2014, 86(9): 4096-101. doi: 10.1021/ac500644x
    [13] Louie A. Multimodality imaging probes: design and challenges[J]. Chem Rev, 2010, 110(5): 3146-95. doi: 10.1021/cr9003538
    [14] Liu C, Gao Z, Zeng J, et al. Magnetic/upconversion fluorescent NaGdF4: Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo[J]. ACS Nano, 2013, 7(8): 7227-40. doi: 10.1021/nn4030898
    [15] Wang Y, Zhang R, Song RF, et al. Fluoride- specific fluorescence/ MRI bimodal probe based on a gadolinium(iii)-flavone complex: synthesis, mechanism and bioimaging application in vivo[J]. J Mater Chem B, 2016, 4(46): 7379-86. doi: 10.1039/C6TB02384C
    [16] Chen K, Chen X. Design and development of molecular imaging probes[J]. Curr Top Med Chem, 2010, 10(12): 1227-36. doi: 10.2174/156802610791384225
    [17] Su F, Agarwal S, Pan T, et al. Multifunctional PHPMA-derived polymer for ratiometric pH sensing, fluorescence imaging, and magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2018, 10(2): 1556-65. doi: 10.1021/acsami.7b15796
    [18] Chen H, Wang GD, Tang W, et al. Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging [J]. Adv Mater, 2014, 26(39): 6761-6. doi: 10.1002/adma.201402964
    [19] Zheng S, Yu N, Han C, et al. Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling[J]. Biochem Biophys Res Commun, 2019, 511(2): 207-13. doi: 10.1016/j.bbrc.2019.01.098
    [20] Gong N, Wang H, Li S, et al. Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe[J]. Langmuir, 2014, 30(36): 10933-9. doi: 10.1021/la502705g
    [21] Bourlinos AB, Bakandritsos A, Kouloumpis A, et al. Gd(iii)-doped carbon dots as a dual fluorescent-MRI probe[J]. J Mater Chem, 2012, 22(44): 23327. doi: 10.1039/c2jm35592b
    [22] Ren X, Liu L, Li Y, et al. Facile preparation of gadolinium(iii) chelates functionalized carbon quantum dot-based contrast agent for magnetic resonance/fluorescence multimodal imaging[J]. J Mater Chem B, 2014, 2(34): 5541-9. doi: 10.1039/C4TB00709C
    [23] Yan YE, Shao EL, Deng XY, et al. Microwave-assisted synthesis of Gd(iii)-loaded nanozeolite SOD as MRI contrast agent with remarkable stability in vivo[J]. J Mater Chem B, 2014, 2(20): 3041. doi: 10.1039/c4tb00407h
    [24] Qin J, Liang GH, Feng YY, et al. Synthesis of gadolinium/ironbimetal-phenolic coordination polymer nanoparticles for theranostic applications[J]. Nanoscale, 2020, 12(10): 6096-103. doi: 10.1039/C9NR10020B
    [25] Sun X, Zhang MZ, Du RH, et al. A polyethyleneimine-driven selfassembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy[J]. Chem Eng J, 2018, 350: 69-78. doi: 10.1016/j.cej.2018.05.157
  • 加载中
图(4)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  139
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回

    关于《分子影像学杂志》变更刊期通知

    各位专家、作者、读者:

    为了缩短出版时滞,促进科研成果的快速传播,我刊自2024年1月起,刊期由双月刊变更为月刊。本刊主要栏目有:基础研究、临床研究、技术方法、综述等。

    感谢各位专家、作者、读者长期以来对我刊的支持与厚爱!

    南方医科大学学报编辑部

    《分子影像学杂志》

    2023年12月27日