光学相干层析技术在眼科手术导航方面的研究进展

李云耀,樊金宇,蒋天亮,等. 光学相干层析技术在眼科手术导航方面的研究进展[J]. 光电工程,2023,50(1): 220027. doi: 10.12086/oee.2023.220027
引用本文: 李云耀,樊金宇,蒋天亮,等. 光学相干层析技术在眼科手术导航方面的研究进展[J]. 光电工程,2023,50(1): 220027. doi: 10.12086/oee.2023.220027
Li Y Y, Fan J Y, Jiang T L, et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 2023, 50(1): 220027. doi: 10.12086/oee.2023.220027
Citation: Li Y Y, Fan J Y, Jiang T L, et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 2023, 50(1): 220027. doi: 10.12086/oee.2023.220027

光学相干层析技术在眼科手术导航方面的研究进展

  • 基金项目:
    国家重点研发计划(2022YFC2400771);江苏省科技计划项目(BK20220263)
详细信息
    作者简介:
    通讯作者: 史国华,ghshi_lab@126.com
  • 中图分类号: TN247

Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery

  • Fund Project: National Key R&D Program of China Fund (2022YFC2400771), and Jiangsu Science and Technology Plan Program Fund (BK20220263)
More Information
  • 在眼科显微手术中,传统的术中成像方式由于缺少深度信息,限制了内部结构和手术器械的可视化。光学相干层析成像技术(OCT)是一种非接触式断层成像技术,由于其能提供深度信息、非侵入、成像快、分辨率高等优点,被广泛应用于眼科手术的术中导航。典型的OCT设备可分为手持OCT和显微镜集成OCT。本文简要介绍了时域OCT和频域OCT的原理和发展,回顾了OCT眼科手术导航设备的发展历程,并对各个类别中有代表性的OCT系统进行了介绍,对其成像原理、性能、优缺点等进行了描述和对比,最后对该技术在眼科手术中的应用做出了总结和展望。

  • 加载中
  • 图 1  时域OCT系统示意图。SLD:低相干光源;FOC:光纤耦合器;PC:偏振调制器;PM:相位调制器;D:光电探测器;DM:解调器

    Figure 1.  System schematic of the TD-OCT system. SLD: super luminescent diode; FOC: fiber optic couplers; PC: polarization modulators; PM: phase modulator; D: detector; DM: demodulator

    图 2  Boppart等研发的HHOCT探头[39]。(a) HHOCT探头结构;(b) 使用HHOCT探头扫描眼部;(c) 角膜的实时OCT成像

    Figure 2.  HHOCT probes developed by Boppart et al[39]. (a) The structure of the HHOCT probe; (b) Eye scan using HHOCT probe; (c) Real-time OCT imaging of the cornea

    图 3  二维MEMS扫描镜[50]。(a) 扫描示意图;(b) 封装后的MEMS扫描镜

    Figure 3.  Two dimensional MEMS scanning mirror[50]. (a) Layout of the scanning system; (b) Packaged MEMS scanning mirror

    图 4  Lu等研发的HHOCT探头[42]。(a, b)探头外观及结构;(c) 使用HHOCT得到的眼底黄斑区图像

    Figure 4.  HHOCT probes developed by Lu et al[42]. (a, b) The probe and its structure; (c) HHOCT imaging of the macula

    图 5  HHOCT探针。(a-c) Joos等设计的25G手持OCT探针[57];(d-f) Asami等设计的23G手持OCT探针[56]

    Figure 5.  Needle-based HHOCT probes. (a-c) 25G needle-based fiber HHOCT probe designed by Joos et al[57]; (d-f) 23G needle-based fiber HHOCT probe designed by Asami et al[56]

    图 6  集成OCT的手术器械。(a) SMART微型手术钳[58];(b, c) Yu等设计的OCT集成手术钳[61];(d) 使用OCT集成手术钳接近离体山羊眼视网膜[61]

    Figure 6.  OCT-integrated surgical instruments. (a) SMART micro forceps[58]; (b, c) OCT-integrated micro forceps designed by Yu et al[61]; (d) Approaching goat retinal using OCT-integrated micro forceps[61]

    图 7  研究阶段MIOCT设备。(a) 在显微镜相机端口集成的MIOCT[64];(b, c) 显微镜物镜前集成的MIOCT[68]

    Figure 7.  Research-grade MIOCT systems. (a) MIOCT scanner coupled onto the camera port of a microscope[64]; (b, c) MIOCT integrated prior to the objective[68]

    图 8  商业化MIOCT:蔡司RESCAN 700。(a) RESCAN 700机体[3];(b) 医生在手术中使用RESCAN 700[69];(c) RESCAN 700光学显微镜眼底成像[68];(d) RESCAN 700 OCT系统眼底成像[71]

    Figure 8.  Commercialized MIOCT system: Zeiss RESCAN 700. (a) RESCAN 700 system[3]; (b) Surgeon using RESCAN 700 during ocular surgeries[69]; (c) Microscope imaging of the RESCAN 700 system[68]; (d) OCT imaging of the RESCAN 700 system[71]

    图 9  使用MIOCT进行术中实时2D成像。(a) 使用单个B扫描对视网膜成像[71];(b) 使用正交B扫描对角膜成像[73];(c) 使用5束平行B扫描对视网膜成像[69]

    Figure 9.  Intrasurgical live 2D imaging with MIOCT. (a) Retinal imaging using single B-scan[71]; (b) Corneal imaging using two orthogonal B-scans[73]; (c) Retinal imaging using 5 parallel B-scans[69]

    图 10  使用基于扫频OCT的MIOCT对眼前节手术(泪道成形术)成像[78]。(a, b) 切开浅层巩膜瓣后的MIOCT图像;(c, d) 插入小梁切刀后的MIOCT图像;(e, f) 借助MIOCT图像确认集束管扩张

    Figure 10.  Real-time images of anterior segment surgery(canaloplasty) from the microscope-integrated swept-source optical coherence tomography (MIOCT) system[78]. (a, b) MIOCT image after incision of a superficial scleral flap; (c, d) MIOCT image after insertion of a custom-made trabeculotomy; (e, f) Confirming expansion of the collector vessel using MIOCT image

    图 11  使用基于扫频OCT的MIOCT导航眼科手术操作的实验结果[77]。(a) 术中OCT成像;(b) 术后OCT切口分析;(c) 精度测试结果。Trial 1:使用(+)和未使用(-)MIOCT的对比;Trial 2:经MIOCT训练(+/-)和未经MIOCT训练(-/-)后使用传统显微镜的手术精度对比(*代表统计学显著不同)

    Figure 11.  Experimental results of ophthalmic surgeries navigated by swept-frequency OCT-based MIOCT. (a) Intraoperative OCT image; (b) Postoperative suture analysis using OCT; (c) Accuracy test results. Trial 1: comparison of the results with (+) and without (-) MIOCT; Trial 2: accuracy of traditional microscope guided surgeries with (+/-) and without (-/-) MIOCT training (* represents statistically significant difference)

    图 12  4D MIOCT实时成像。(a) 观测视网膜上的陶瓷球体[82];(b) 手术工具抓取视网膜色素上皮细胞层的实时图像[83];(c) 玻璃体切除术中视网膜下积液的二维和三维图像[84]

    Figure 12.  4D MIOCT real-time imaging. (a) Observing a ceramic ball on the retina[82]; (b) Real-time image of a surgical tool grasping the retinal pigment epithelial cell layer[83]; (c) 2D and 3D images of subretinal fluid during vitrectomy[84]

    图 13  可实现三维可视化的HUD集成MIOCT[79]。(a) 医生在手术中使用带有HUD的MIOCT系统;(b) 左右目镜中的实时图像

    Figure 13.  HUD-integrated MIOCT for 3D visualization[79]. (a) HUD-integrated MIOCT in use during a surgery; (b) Real-time image displayed on both oculars

    图 14  使用体积增强渲染算法处理MIOCT图像[81]。(a) 渲染前的人眼MIOCT图像;(b) 增强渲染后的人眼MIOCT图像;(c) 原始视网膜(Epiretinal membrane, ERM)及黄斑孔(macular hole, MH)MIOCT图像;(d) 增强渲染后的视网膜及黄斑孔MIOCT图像

    Figure 14.  MIOCT images with enhanced volume rendering[81]. (a) Original MIOCT image of human eye; (b) Enhanced MIOCT image of human eye; (c) Original MIOCT image of an epiretinal membrane (ERM) and a macular hole (MH); (d) Enhanced MIOCT image of an epiretinal membrane (ERM) and a macular hole (MH)

    图 15  视网膜剥离术中的MIOCT图像及其着色[87]。(a) 术中MIOCT图像;(b) 着色后的MIOCT图像

    Figure 15.  Original and colorized MIOCT images of retinal membrane peeling[87]. (a) Intraoperative MIOCT image; (b) Colorized MIOCT image

  • [1]

    Scott A W, Farsiu S, Enyedi L B, et al. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device[J]. Am J Ophthalmol, 2009, 147(2): 364−373.e2. doi: 10.1016/j.ajo.2008.08.010

    [2]

    Carrasco-Zevallos O M, Viehland C, Keller B, et al. Review of intraoperative optical coherence tomography: technology and applications[J]. Biomed Opt Express, 2017, 8(3): 1607−1637. doi: 10.1364/BOE.8.001607

    [3]

    Muijzer M B, Schellekens P A W J, Beckers H J M, et al. Clinical applications for intraoperative optical coherence tomography: a systematic review[J]. Eye, 2022, 36(2): 379−391. doi: 10.1038/s41433-021-01686-9

    [4]

    Zhang S L, Liu L W, Ren S, et al. Recent advances in nonlinear optics for bio-imaging applications[J]. Opto-Electron Adv, 2020, 3(10): 200003. doi: 10.29026/oea.2020.200003

    [5]

    Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography-principles and applications[J]. Rep Prog Phys, 2003, 66(2): 239−303. doi: 10.1088/0034-4885/66/2/204

    [6]

    Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt Express, 2003, 11(18): 2183−2189. doi: 10.1364/OE.11.002183

    [7]

    Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Opt Express, 2003, 11(8): 889−894. doi: 10.1364/OE.11.000889

    [8]

    Drexler W, Fujimoto J G. State-of-the-art retinal optical coherence tomography[J]. Prog Retin Eye Res, 2008, 27(1): 45−88. doi: 10.1016/j.preteyeres.2007.07.005

    [9]

    Suter M J, Tearney G J, Oh W Y, et al. Progress in intracoronary optical coherence tomography[J]. IEEE J Sel Top Quantum Electron, 2010, 16(4): 706−714. doi: 10.1109/JSTQE.2009.2035333

    [10]

    Yoo H, Kim J W, Shishkov M, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo[J]. Nat Med, 2011, 17(12): 1680−1684. doi: 10.1038/nm.2555

    [11]

    Gora M J, Sauk J S, Carruth R W, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure[J]. Nat Med, 2013, 19(2): 238−240. doi: 10.1038/nm.3052

    [12]

    Boppart S A, Luo W, Marks D L, et al. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer[J]. Breast Cancer Res Treat, 2004, 84(2): 85−97. doi: 10.1023/B:BREA.0000018401.13609.54

    [13]

    Kang J Q, Zhu R, Sun Y X, et al. Pencil-beam scanning catheter for intracoronary optical coherence tomography[J]. Opto-Electron Adv, 2022, 5(3): 200050. doi: 10.29026/oea.2022.200050

    [14]

    刘敬璇, 樊金宇, 汪权, 等. SS-OCTA对黑色素瘤皮肤结构和血管的成像实验[J]. 光电工程, 2020, 47(2): 190239. doi: 10.12086/oee.2020.190239

    Liu J X, Fan J Y, Wang Q, et al. Imaging of skin structure and vessels in melanoma by swept source optical coherence tomography angiography[J]. Opto-Electron Eng, 2020, 47(2): 190239. doi: 10.12086/oee.2020.190239

    [15]

    Wilkins J R, Puliafito C A, Hee M R, et al. Characterization of epiretinal membranes using optical coherence tomography[J]. Ophthalmology, 1996, 103(12): 2142−2151. doi: 10.1016/S0161-6420(96)30377-1

    [16]

    Massin P, Allouch C, Haouchine B, et al. Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery[J]. Am J Ophthalmol, 2000, 130(6): 732−739. doi: 10.1016/S0002-9394(00)00574-2

    [17]

    Kasuga Y, Arai J, Akimoto M, et al. Optical coherence tomograghy to confirm early closure of macular holes[J]. Am J Ophthalmol, 2000, 130(5): 675−676. doi: 10.1016/S0002-9394(00)00587-0

    [18]

    Behrens A, Stark W J, Pratzer K A, et al. Dynamics of small-incision clear cornea wounds after phacoemulsification surgery using optical coherence tomography in the early postoperative period[J]. J Refract Surg, 2008, 24(1): 46−49. doi: 10.3928/1081597X-20080101-07

    [19]

    Wei J, Hellmuth T. Optical coherence tomography assisted ophthalmologic surgical microscope: 5493109[P]. 1996-02-20.

    [20]

    Boppart S A, Bouma B E, Pitris C, et al. Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography[J]. Radiology, 1998, 208(1): 81−86. doi: 10.1148/radiology.208.1.9646796

    [21]

    Tao Y K, Ehlers J P, Toth C A, et al. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery[J]. Opt Lett, 2010, 35(20): 3315−3317. doi: 10.1364/OL.35.003315

    [22]

    Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT1−OCT13. doi: 10.1167/iovs.16-19963

    [23]

    Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178−1181. doi: 10.1126/science.1957169

    [24]

    Danielson B L, Boisrobert C Y. Absolute optical ranging using low coherence interferometry[J]. Appl Opt, 1991, 30(21): 2975−2979. doi: 10.1364/AO.30.002975

    [25]

    陆冬筱, 房文汇, 李玉瑶, 等. 光学相干层析成像技术原理及研究进展[J]. 中国光学, 2020, 13(5): 919−935. doi: 10.37188/CO.2020-0037

    Lu D X, Fang W H, Li Y Y, et al. Optical coherence tomography: principles and recent developments[J]. Chin Opt, 2020, 13(5): 919−935. doi: 10.37188/CO.2020-0037

    [26]

    Qin J, An L. Optical coherence tomography for ophthalmology imaging[M]//Wei X B, Gu B B. Optical Imaging in Human Disease and Biological Research. Singapore: Springer, 2021: 197–216. doi: 10.1007/978-981-15-7627-0_10.

    [27]

    Szydlo J, Delachenal N, Gianotti R, et al. Air-turbine driven optical low-coherence reflectometry at 28. 6-kHz scan repetition rate[J]. Opt Commun, 1998, 154(1–3): 1−4. doi: 10.1016/S0030-4018(98)00303-4

    [28]

    Alexopoulos P, Madu C, Wollstein G, et al. The development and clinical application of innovative optical ophthalmic imaging techniques[J]. Front Med, 2022, 9: 891369. doi: 10.3389/FMED.2022.891369

    [29]

    Rollins A M, Kulkarni M D, Yazdanfar S, et al. In vivo video rate optical coherence tomography[J]. Opt Express, 1998, 3(6): 219−229. doi: 10.1364/OE.3.000219

    [30]

    姜盼秋, 汪平河. 谱域光学相干层析系统的色散补偿技术研究[J]. 光电工程, 2021, 48(10): 210184. doi: 10.12086/oee.2021.210184

    Jiang P Q, Wang P H. Research on dispersion compensation technology for SD-OCT system[J]. Opto-Electron Eng, 2021, 48(10): 210184. doi: 10.12086/oee.2021.210184

    [31]

    Tearney G J, Bouma B E, Fujimoto J G. High-speed phase-and group-delay scanning with a grating-based phase control delay line[J]. Opt Lett, 1997, 22(23): 1811−1813. doi: 10.1364/OL.22.001811

    [32]

    Potsaid B, Baumann B, Huang D, et al. Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100, 000 to 400, 000 axial scans per second[J]. Opt Express, 2010, 18(19): 20029−20048. doi: 10.1364/OE.18.020029

    [33]

    Cense B, Nassif N A, Chen T C, et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography[J]. Opt Express, 2004, 12(11): 2435−2447. doi: 10.1364/OPEX.12.002435

    [34]

    An L, Li P, Shen T T, et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second[J]. Biomed Opt Express, 2011, 2(10): 2770−2783. doi: 10.1364/BOE.2.002770

    [35]

    Gora M, Karnowski K, Szkulmowski M, et al. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range[J]. Opt Express, 2009, 17(17): 14880−14894. doi: 10.1364/OE.17.014880

    [36]

    Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Opt Lett, 1997, 22(5): 340−342. doi: 10.1364/OL.22.000340

    [37]

    Monroy G L, Won J, Spillman Jr D R, et al. Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements[J]. J Biomed Opt, 2017, 22(12): 121715. doi: 10.1117/1.JBO.22.12.121715

    [38]

    Chen X, Tai V, McGeehan B, et al. Repeatability and reproducibility of axial and lateral measurements on handheld optical coherence tomography systems compared with tabletop system[J]. Transl Vis Sci Technol, 2020, 9(11): 25. doi: 10.1167/tvst.9.11.25

    [39]

    Boppart S A, Bouma B E, Pitris C, et al. Forward-imaging instruments for optical coherence tomography[J]. Opt Lett, 1997, 22(21): 1618−1620. doi: 10.1364/OL.22.001618

    [40]

    Swanson E A, Izatt J A, Hee M R, et al. In vivo retinal imaging by optical coherence tomography[J]. Opt Lett, 1993, 18(21): 1864−1866. doi: 10.1364/OL.18.001864

    [41]

    Radhakrishnan S, Rollins A M, Roth J E, et al. Real-time optical coherence tomography of the anterior segment at 1310 nm[J]. Arch Ophthalmol, 2001, 119(8): 1179−1185. doi: 10.1001/archopht.119.8.1179

    [42]

    Lu C D, Kraus M F, Potsaid B, et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror[J]. Biomed Opt Express, 2014, 5(1): 293−311. doi: 10.1364/BOE.5.000293

    [43]

    Brown W J, Buckland E L, Izatt J A. Portable optical coherence tomography (OCT) devices and related systems: 8064989[P]. 2011-11-22.

    [44]

    Maldonado R S, Izatt J A, Sarin N, et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2678−2685. doi: 10.1167/iovs.09-4403

    [45]

    Dayani P N, Maldonado R, Farsiu S, et al. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery[J]. Retina, 2009, 29(10): 1457−1468. doi: 10.1097/IAE.0b013e3181b266bc

    [46]

    Jung W, Kim J, Jeon M, et al. Handheld optical coherence tomography scanner for primary care diagnostics[J]. IEEE Trans Biomed Eng, 2011, 58(3): 741−744. doi: 10.1109/TBME.2010.2096816

    [47]

    Riazi-Esfahani M, Khademi M R, Mazloumi M, et al. Macular surgery using intraoperative spectral domain optical coherence tomography[J]. J Ophthalmic Vis Res, 2015, 10(3): 309. doi: 10.4103/2008-322X.170355

    [48]

    Pichi F, Alkabes M, Nucci P, et al. Intraoperative SD-OCT in macular surgery[J]. Ophthalmic Surg Lasers Imaging, 2012, 43(S6): S54−S60. doi: 10.3928/15428877-20121001-08

    [49]

    Yeow J T W, Yang V X D, Chahwan A, et al. Micromachined 2-D scanner for 3-D optical coherence tomography[J]. Sens Actuators A Phys, 2005, 117(2): 331−340. doi: 10.1016/j.sna.2004.06.021

    [50]

    Jung W, Zhang J, Wang L, et al. Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror[J]. IEEE J Sel Top Quantum Electron, 2005, 11(4): 806−810. doi: 10.1109/JSTQE.2005.857683

    [51]

    Aguirre A D, Herz P R, Chen Y, et al. Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En face imaging[J]. Opt Express, 2007, 15(5): 2445−2453. doi: 10.1364/OE.15.002445

    [52]

    Grulkowski I, Liu J J, Potsaid B, et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers[J]. Biomed Opt Express, 2012, 3(11): 2733−2751. doi: 10.1364/BOE.3.002733

    [53]

    Grulkowski I, Liu J J, Potsaid B, et al. High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source[J]. Opt Lett, 2013, 38(5): 673−675. doi: 10.1364/OL.38.000673

    [54]

    Nankivil D, Waterman G, LaRocca F, et al. Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe[J]. Biomed Opt Express, 2015, 6(11): 4516−4528. doi: 10.1364/BOE.6.004516

    [55]

    LaRocca F, Nankivil D, DuBose T, et al. In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe[J]. Nat Photonics, 2016, 10(9): 580−584. doi: 10.1038/nphoton.2016.141

    [56]

    Asami T, Terasaki H, Ito Y, et al. Development of a fiber-optic optical coherence tomography probe for intraocular use[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT568−OCT574. doi: 10.1167/iovs.15-18853

    [57]

    Joos K M, Shen J H. Miniature real-time intraoperative forward-imaging optical coherence tomography probe[J]. Biomed Opt Express, 2013, 4(8): 1342−1350. doi: 10.1364/BOE.4.001342

    [58]

    Song C, Park D Y, Gehlbach P L, et al. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery[J]. Biomed Opt Express, 2013, 4(7): 1045−1050. doi: 10.1364/BOE.4.001045

    [59]

    Cheon G W, Huang Y, Cha J, et al. Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools[J]. Biomed Opt Express, 2015, 6(5): 1942−1953. doi: 10.1364/BOE.6.001942

    [60]

    Song C, Gehlbach P L, Kang J U. Active tremor cancellation by a “smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography[J]. Opt Express, 2012, 20(21): 23414−23421. doi: 10.1364/OE.20.023414

    [61]

    Yu H R, Shen J H, Shah R J, et al. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps[J]. Biomed Opt Express, 2015, 6(2): 457−472. doi: 10.1364/BOE.6.000457

    [62]

    Binder S, Falkner-Radler C I, Hauger C, et al. Feasibility of intrasurgical spectral-domain optical coherence tomography[J]. Retina, 2011, 31(7): 1332−1336. doi: 10.1097/IAE.0b013e3182019c18

    [63]

    Posarelli C, Sartini F, Casini G, et al. What is the impact of intraoperative microscope-integrated OCT in ophthalmic surgery? Relevant applications and outcomes. A systematic review[J]. J Clin Med, 2020, 9(6): 1682. doi: 10.3390/jcm9061682

    [64]

    Lankenau E, Klinger D, Winter C, et al. Combining optical coherence tomography (OCT) with an operating microscope[C]//Advances in Medical Engineering, 2007: 343–348. doi: 10.1007/978-3-540-68764-1_57.

    [65]

    Ehlers J P. Intraoperative optical coherence tomography: past, present, and future[J]. Eye, 2016, 30(2): 193−201. doi: 10.1038/eye.2015.255

    [66]

    Geerling G, Müller M, Winter C, et al. Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery[J]. Arch Ophthalmol, 2005, 123(2): 253−257. doi: 10.1001/archopht.123.2.253

    [67]

    Probst J, Hillmann D, Lankenau E M, et al. Optical coherence tomography with online visualization of more than seven rendered volumes per second[J]. J Biomed Opt, 2010, 15(2): 026014. doi: 10.1117/1.3314898

    [68]

    Tao Y K, Srivastava S K, Ehlers J P. Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers[J]. Biomed Opt Express, 2014, 5(6): 1877−1885. doi: 10.1364/BOE.5.001877

    [69]

    Ehlers J P, Kaiser P K, Srivastava S K. Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study[J]. Br J Ophthalmol, 2014, 98(10): 1329−1332. doi: 10.1136/bjophthalmol-2014-305294

    [70]

    Ehlers J P, Modi Y S, Pecen P E, et al. The DISCOVER study 3-year results: feasibility and usefulness of microscope-integrated intraoperative OCT during ophthalmic surgery[J]. Ophthalmology, 2018, 125(7): 1014−1027. doi: 10.1016/j.ophtha.2017.12.037

    [71]

    Tuifua T S, Sood A B, Abraham J R, et al. Epiretinal membrane surgery using intraoperative OCT-guided membrane removal in the DISCOVER study versus conventional membrane removal[J]. Ophthalmol Retina, 2021, 5(12): 1254−1262. doi: 10.1016/j.oret.2021.02.013

    [72]

    Hahn P, Carrasco-Zevallos O, Cunefare D, et al. Intrasurgical human retinal imaging with manual instrument tracking using a microscope-integrated spectral-domain optical coherence tomography device[J]. Transl Vis Sci Technol, 2015, 4(4): 1. doi: 10.1167/tvst.4.4.1

    [73]

    Ehlers J P, Goshe J, Dupps W J, et al. Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results[J]. JAMA Ophthalmol, 2015, 133(10): 1124−1132. doi: 10.1001/jamaophthalmol.2015.2376

    [74]

    Zhang K, Kang J U. Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance[J]. Biomed Opt Express, 2011, 2(4): 764−770. doi: 10.1364/BOE.2.000764

    [75]

    Kang J U, Huang Y, Cha J, et al. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries[J]. J Biomed Opt, 2012, 17(8): 081403. doi: 10.1117/1.JBO.17.8.081403

    [76]

    Li X Q, Wei L, Dong X C, et al. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery[J]. J Biomed Opt, 2015, 20(7): 076001. doi: 10.1117/1.JBO.20.7.076001

    [77]

    Fang W Y, Li Q C, Fan J Y, et al. Microscope-integrated intraoperative optical coherence tomography for anterior segment surgical maneuvers[J]. Transl Vis Sci Technol, 2020, 9(7): 18. doi: 10.1167/tvst.9.7.18

    [78]

    Xu H, Fang W Y, Liu G X, et al. Feasibility of microscope-integrated swept-source optical coherence tomography in canaloplasty[J]. Ann Transl Med, 2020, 8(23): 1577. doi: 10.21037/ATM-20-3469

    [79]

    Shen L B, Carrasco-Zevallos O, Keller B, et al. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography[J]. Biomed Opt Express, 2016, 7(5): 1711−1726. doi: 10.1364/BOE.7.001711

    [80]

    Carrasco-Zevallos O M, Keller B, Viehland C, et al. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery[J]. Invest Ophthalmol Vis Sci, 2016, 57(9): OCT37−OCT50. doi: 10.1167/iovs.16-19277

    [81]

    Viehland C, Keller B, Carrasco-Zevallos O M, et al. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT[J]. Biomed Opt Express, 2016, 7(5): 1815−1829. doi: 10.1364/BOE.7.001815

    [82]

    Hsu S T, Gabr H, Viehland C, et al. Volumetric measurement of subretinal blebs using microscope-integrated optical coherence tomography[J]. Transl Vis Sci Technol, 2018, 7(2): 19. doi: 10.1167/tvst.7.2.19

    [83]

    Vajzovic L, Sleiman K, Viehland C, et al. Four-dimensional microscope-integrated optical coherence tomography guidance in a model eye subretinal surgery[J]. Retina, 2019, 39(S1): S194−S198. doi: 10.1097/IAE.0000000000002518

    [84]

    Gabr H, Chen X, Zevallos-Carrasco O M, et al. Visualization from intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for complications of proliferative diabetic retinopathy[J]. Retina, 2018, 38(S1): S110−S120. doi: 10.1097/IAE.0000000000002021

    [85]

    Pfau M, Michels S, Binder S, et al. Clinical experience with the first commercially available intraoperative optical coherence tomography system[J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(10): 1001−1008. doi: 10.3928/23258160-20151027-03

    [86]

    Ehlers J P, Srivastava S K, Feiler D, et al. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback[J]. PLoS One, 2014, 9(8): e105224. doi: 10.1371/journal.pone.0105224

    [87]

    Bleicher I D, Jackson-Atogi M, Viehland C, et al. Depth-based, motion-stabilized colorization of microscope-integrated optical coherence tomography volumes for microscope-independent microsurgery[J]. Transl Vis Sci Technol, 2018, 7(6): 1. doi: 10.1167/tvst.7.6.1

    [88]

    Zhao H X, Li K, Yang F, et al. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo[J]. Opto-Electron Adv, 2021, 4(6): 200017. doi: 10.29026/oea.2021.200017

  • 加载中

(15)

计量
  • 文章访问数:  7317
  • PDF下载数:  1510
  • 施引文献:  0
出版历程
收稿日期:  2022-03-28
修回日期:  2022-10-17
录用日期:  2022-10-21
网络出版日期:  2022-12-22
刊出日期:  2023-01-25

目录

/

返回文章
返回