Skip to main content

Optical Coherence Tomography for Ophthalmology Imaging

  • Chapter
  • First Online:
Optical Imaging in Human Disease and Biological Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 3233))

Abstract

Optical coherence tomography (OCT) is a depth-resolved imaging modality, which is able to achieve micrometer-scale resolution within biological tissue noninvasively. In the past 30 years, researchers all around the world had made several essential efforts on techniques relevant to OCT. OCT has become a routine process for eye diseases with different types. In this chapter, the three important stages in the development of OCT are briefly illustrated, including the time domain OCT (TD-OCT), the frequency domain OCT (FD-OCT) and the optical coherence tomography angiography (OCTA). Each of the technique has made great progress for use on living human eye imaging in clinical applications. TD-OCT was first proposed and commercialized, which is able to achieve acceptable 2D depth-resolved cross-sectional images of human retina in vivo. FD-OCT was the upgraded OCT technique compared with TD-OCT. By capturing the coherent signal within the Fourier space, the FD-OCT could improve the image sensitivity compared with TD-OCT, and achieve dozens of kilo hertz imaging speed. OCTA is the newest developments of OCT technique, which is able to visualize the micro vasculature networks of human retina in vivo. With OCTA technique, the newest ophthalmologic OCT system is able to achieve detailed diagnosis for both micro-structure and vasculature abnormalities for clinical applications. The further development of OCT technique on imaging speed, contrast, resolution, field of view, and so on will make OCT to be a more powerful tool for clinical usages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Fercher AF (2010) Optical coherence tomography- development, principles, applications. Z Med Phys 20:251–276

    Article  PubMed  Google Scholar 

  3. Tomlins PH, Wang RK (2005) Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38:17

    Article  CAS  Google Scholar 

  4. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188

    Article  PubMed  CAS  Google Scholar 

  5. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  PubMed  Google Scholar 

  6. Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  PubMed  CAS  Google Scholar 

  7. Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24:1221–1223

    Article  PubMed  CAS  Google Scholar 

  8. Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7:502–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. An L, Li P, Shen TT, Wang R (2011) High speed spectral domain optical coherence tomography for retinal imaging at 500,000 Alines per second. Biomed Opt Express 2:2770–2783

    Article  PubMed  PubMed Central  Google Scholar 

  10. An L, Guan G, Wang RK (2011) High-speed 1310 nm-band spectral domain optical coherence tomography at 184,000 lines per second. J Biomed Opt 16:060506

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18:14685–14704

    Article  PubMed  Google Scholar 

  12. An L, Wang RK (2007) Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. Opt Lett 32:3423–3425

    Article  PubMed  Google Scholar 

  13. Baumann B, Pircher M, Gotzinger E, Hitzenberger CK (2007) Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt Express 15:13375–13387

    Article  PubMed  Google Scholar 

  14. Tsai TH, Potsaid B, Tao YK, Jayaraman V, Jiang J, Heim PJ, Kraus MF, Zhou C, Hornegger J, Mashimo H, Cable AE, Fujimoto JG (2013) Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed Opt Express 4:1119–1132

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett 26:608–610

    Article  PubMed  CAS  Google Scholar 

  16. Kowalevicz A, Ko T, Hartl I, Fujimoto J, Pollnau M, Salathe R (2002) Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt Express 10:349–353

    Article  PubMed  Google Scholar 

  17. Yun S, Tearney G, Bouma B, Park B, de Boer J (2003) High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt Express 11:3598–3604

    Article  PubMed  CAS  Google Scholar 

  18. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG (2006) High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113:2054.e2051–2054.e2014

    Article  Google Scholar 

  19. Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF (2002) Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett 27:1415–1417

    Article  PubMed  CAS  Google Scholar 

  20. Baba T, Hirose A, Kawazoe Y, Mochizuki M (2003) Optical coherence tomography for retinal detachment with a macular hole in a highly myopic eye. Ophthalmic Surg Lasers Imaging 34:483–484

    Article  PubMed  Google Scholar 

  21. Chen HY, Wang TH, Lee YM, Hung TJ (2005) Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc 104:927–934

    PubMed  Google Scholar 

  22. Ho J, Witkin AJ, Liu J, Chen Y, Fujimoto JG, Schuman JS, Duker JS (2011) Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118:687–693

    Article  PubMed  Google Scholar 

  23. Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang IK (2013) Optical coherence tomography - 15 years in cardiology. Circ J 77:1933–1940

    Article  PubMed  Google Scholar 

  24. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K (2005) Applications of optical coherence tomography in dermatology. J Dermatol Sci 40:85–94

    Article  PubMed  Google Scholar 

  25. Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF (2004) Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol 123:458–463

    Article  PubMed  CAS  Google Scholar 

  26. Patel DV, McGhee CN (2013) Quantitative analysis of in vivo confocal microscopy images: a review. Surv Ophthalmol 58:466–475

    Article  PubMed  Google Scholar 

  27. Patel DV, Zhang J, McGhee CN (2019) In vivo confocal microscopy of the inflamed anterior segment: a review of clinical and research applications. Clin Exp Ophthalmol 47:334–345

    Article  PubMed  Google Scholar 

  28. Mumcuoglu T, Wollstein G, Wojtkowski M, Kagemann L, Ishikawa H, Gabriele ML, Srinivasan V, Fujimoto JG, Duker JS, Schuman JS (2008) Improved visualization of glaucomatous retinal damage using high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 115:782–789.e782

    Article  PubMed  Google Scholar 

  29. Chen Y, Vuong LN, Liu J, Ho J, Srinivasan VJ, Gorczynska I, Witkin AJ, Duker JS, Schuman J, Fujimoto JG (2009) Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration. Opt Express 17:4046–4060

    Article  PubMed  CAS  Google Scholar 

  30. Ebneter A, Gekkiev B, Chanana B, Wolf S, Zinkernagel MS (2015) The presence of intra- or subretinal fluid during the loading phase in the treatment of exudative age-related macular degeneration with intravitreal ranibizumab assessed by optical coherence tomography. Ophthalmologica 234:61–66

    Article  PubMed  CAS  Google Scholar 

  31. Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS (2006) Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 90:191–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang Y, Li SY, Zhu M, Chen SJ, Liu Y, Men XH, Gillies M, Larsson J (2005) Metamorphopsia after successful retinal detachment surgery: an optical coherence tomography study. Acta Ophthalmol Scand 83:168–171

    Article  PubMed  Google Scholar 

  33. Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME (1999) High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82:128–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Strom C, Sander B, Larsen N, Larsen M, Lund-Andersen H (2002) Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 43:241–245

    PubMed  Google Scholar 

  35. Giovannini A, Amato G, Mariotti C (2002) The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 236:34–36

    Article  PubMed  CAS  Google Scholar 

  36. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463

    Article  PubMed  Google Scholar 

  37. Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Article  PubMed  Google Scholar 

  38. Spaide RF, Fujimoto JG, Waheed NK (2015) Optical coherence tomography angiography. Retina 35:2161–2162

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nehemy MB, Brocchi DN, Veloso CE (2015) Optical coherence tomography angiography imaging of quiescent choroidal neovascularization in age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retina 46:1056–1057

    Article  PubMed  Google Scholar 

  40. Kuehlewein L, Dansingani KK, de Carlo TE, Bonini Filho MA, Iafe NA, Lenis TL, Freund KB, Waheed NK, Duker JS, Sadda SR, Sarraf D (2015) Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration. Retina 35:2229–2235

    Article  PubMed  Google Scholar 

  41. Danielson BL, Boisrobert CY (1991) Absolute optical ranging using low coherence interferometry. Appl Opt 30:2975–2979

    Article  PubMed  CAS  Google Scholar 

  42. Gerges AS, Jackson DA (1991) A fibre-optic based high temperature probe illuminated by a multimode laser diode. Opt Commun 80:5

    Article  Google Scholar 

  43. Rao YJ, Jackson DA (1994) Prototype fiber-optic-based ultrahigh pressure remote sensor with built-in temperature compensation. Rev Sci Instrum 65:4

    Google Scholar 

  44. Vikram Bhatia KA, Murphy RO, Claus ME, Jones JL, Grace TA, Tran JAG (1996) Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system. Meas Sci Technol 7:4

    Google Scholar 

  45. Brezinski ME, Tearney GJ, Bouma B, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1998) Optical biopsy with optical coherence tomography. Ann N Y Acad Sci 838:68–74

    Article  PubMed  CAS  Google Scholar 

  46. Fujimoto J, Swanson E (2016) The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci 57:OCT1–OCT13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tearney GJ, Bouma BE, Fujimoto JG (1997) High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt Lett 22:1811–1813

    Article  PubMed  CAS  Google Scholar 

  48. Cense B, Nassif N, Chen T, Pierce M, Yun SH, Park B, Bouma B, Tearney G, de Boer J (2004) Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express 12:2435–2447

    Article  PubMed  Google Scholar 

  49. Cense B, Chen TC, Nassif N, Pierce MC, Yun SH, Park BH, Bouma BE, Tearney GJ, de Boer JF (2006) Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Bull Soc Belge Ophtalmol (302):123–132

    Google Scholar 

  50. Zhang J, Rao B, Chen Z (2005) Swept source based fourier domain functional optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc 7:7230–7233

    Google Scholar 

  51. Davis AM, Choma MA, Izatt JA (2005) Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. J Biomed Opt 10:064005

    Article  PubMed  Google Scholar 

  52. Choma MA, Hsu K, Izatt JA (2005) Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt 10:44009

    Article  PubMed  Google Scholar 

  53. Nielsen F, Thrane L, Black J, Bjarklev A, Andersen P (2005) Swept wavelength source in the 1 microm range. Opt Express 13:4096–4106

    Article  PubMed  Google Scholar 

  54. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  55. Folgar FA, Jaffe GJ, Ying GS, Maguire MG, Toth CA, G. Comparison of Age-Related Macular Degeneration Treatments Trials Research (2014) Comparison of optical coherence tomography assessments in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:1956–1965

    Article  PubMed  Google Scholar 

  56. Gupta V, Gupta P, Singh R, Dogra MR, Gupta A (2008) Spectral-domain Cirrus high-definition optical coherence tomography is better than time-domain Stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Am J Ophthalmol 145:1018–1022

    Article  PubMed  Google Scholar 

  57. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG (2008) Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 49:5103–5110

    Article  PubMed  Google Scholar 

  58. van Velthoven ME, Verbraak FD, Garcia PM, Schlingemann RO, Rosen RB, de Smet MD (2005) Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 89:1483–1488

    Article  PubMed  PubMed Central  Google Scholar 

  59. van Velthoven ME, Verbraak FD, Yannuzzi LA, Rosen RB, Podoleanu AG, de Smet MD (2006) Imaging the retina by en face optical coherence tomography. Retina 26:129–136

    Article  PubMed  Google Scholar 

  60. Mujat M, Chan R, Cense B, Park B, Joo C, Akkin T, Chen T, de Boer J (2005) Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt Express 13:9480–9491

    Article  PubMed  Google Scholar 

  61. Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146:679–687

    Article  PubMed  PubMed Central  Google Scholar 

  62. Loduca AL, Zhang C, Zelkha R, Shahidi M (2010) Thickness mapping of retinal layers by spectral-domain optical coherence tomography. Am J Ophthalmol 150:849–855

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sung KR, Kim DY, Park SB, Kook MS (2009) Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology 116:1264–1270. 1270.e1261

    Article  PubMed  Google Scholar 

  64. Nunes RP, Gregori G, Yehoshua Z, Stetson PF, Feuer W, Moshfeghi AA, Rosenfeld PJ (2013) Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina. Ophthalmic Surg Lasers Imaging Retina 44:344–359

    Article  PubMed  Google Scholar 

  65. Sikorski BL, Malukiewicz G, Stafiej J, Lesiewska-Junk H, Raczynska D (2013) The diagnostic function of OCT in diabetic maculopathy. Mediat Inflamm 2013:434560

    Article  Google Scholar 

  66. Menke MN, Dabov S, Knecht P, Sturm V (2011) Reproducibility of retinal thickness measurements in patients with age-related macular degeneration using 3D Fourier-domain optical coherence tomography (OCT) (Topcon 3D-OCT 1000). Acta Ophthalmol 89:346–351

    Article  PubMed  Google Scholar 

  67. Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117:1684–1691

    Article  PubMed  Google Scholar 

  68. Witkin AJ, Vuong LN, Srinivasan VJ, Gorczynska I, Reichel E, Baumal CR, Rogers AH, Schuman JS, Fujimoto JG, Duker JS (2009) High-speed ultrahigh resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration. Ophthalmology 116:956–963

    Article  PubMed  Google Scholar 

  69. Henschel A, Spital G, Lommatzsch A, Pauleikhoff D (2018) Optical coherence tomography in neovascular age-related macular degeneration compared to fluorescein angiography and visual acuity. Eur J Ophthalmol 19:5

    Google Scholar 

  70. Jain A, Desai RU, Charalel RA, Quiram P, Yannuzzi L, Sarraf D (2009) Solar retinopathy: comparison of optical coherence tomography (OCT) and fluorescein angiography (FA). Retina 29:1340–1345

    Article  PubMed  Google Scholar 

  71. Papadia M, Misteli M, Jeannin B, Herbort CP (2014) The influence of anti-VEGF therapy on present day management of macular edema due to BRVO and CRVO: a longitudinal analysis on visual function, injection time interval and complications. Int Ophthalmol 34:1193–1201

    Article  PubMed  Google Scholar 

  72. An L, Qin J, Wang RK (2010) Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express 18:8220–8228

    Article  PubMed  CAS  Google Scholar 

  73. An L, Shen TT, Wang RK (2011) Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. J Biomed Opt 16:106013

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang RK, An L, Francis P, Wilson DJ (2010) Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35:1467–1469

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang RK, An L (2011) Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate. J Biomed Opt 16:050503

    Article  PubMed  PubMed Central  Google Scholar 

  76. Keiner CM, Zhou H, Zhang Q, Wang RK, Rinella NT, Oldenburg CE, Duncan JL, Schwartz DM (2019) Quantifying choriocapillaris hypoperfusion in patients with choroidal neovascularization using swept-source OCT angiography. Clin Ophthalmol 13:1613–1620

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang Q, Rezaei KA, Saraf SS, Chu Z, Wang F, Wang RK (2018) Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant Imaging Med Surg 8:743–753

    Article  PubMed  PubMed Central  Google Scholar 

  78. Richter GM, Sylvester B, Chu Z, Burkemper B, Madi I, Chang R, Reznik A, Varma R, Wang RK (2018) Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clin Ophthalmol 12:2285–2296

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, Shi Y, Wang RK (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fingler J, Schwartz D, Yang C, Fraser SE (2007) Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express 15:12636–12653

    Article  PubMed  Google Scholar 

  81. Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, Zawadzki RJ (2011) In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express 2:1504–1513

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hong Y, Makita S, Yamanari M, Miura M, Kim S, Yatagai T, Yasuno Y (2007) Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express 15:7538–7550

    Article  PubMed  Google Scholar 

  83. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ratnapriya R, Chew EY (2013) Age-related macular degeneration-clinical review and genetics update. Clin Genet 84:160–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444

    Article  PubMed  Google Scholar 

  86. Miere A, Querques G, Semoun O, El Ameen A, Capuano V, Souied EH (2015) Optical coherence tomography angiography in early type 3 neovascularization. Retina 35:2236–2241

    Article  PubMed  Google Scholar 

  87. Roisman L, Zhang Q, Wang RK, Gregori G, Zhang A, Chen CL, Durbin MK, An L, Stetson PF, Robbins G, Miller A, Zheng F, Rosenfeld PJ (2016) Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 123:1309–1319

    Article  PubMed  Google Scholar 

  88. El Ameen A, Cohen SY, Semoun O, Miere A, Srour M, Quaranta-El Maftouhi M, Oubraham H, Blanco-Garavito R, Querques G, Souied EH (2015) Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina 35:2212–2218

    Article  PubMed  Google Scholar 

  89. Kuehlewein L, Sadda SR, Sarraf D (2015) OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy. Eye (Lond) 29:932–935

    Article  CAS  Google Scholar 

  90. Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA 298:902–916

    Article  PubMed  CAS  Google Scholar 

  91. de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, Baumal CR, Crawford C, Reichel E, Witkin AJ, Duker JS, Waheed NK (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370

    Article  PubMed  Google Scholar 

  92. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, Rosen RB (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35:2353–2363

    Article  PubMed  Google Scholar 

  93. Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH (2015) Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 46:796–805

    Article  PubMed  Google Scholar 

  94. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160:35–44.e31

    Article  PubMed  Google Scholar 

  95. Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, Wilson DJ, Huang D (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina 35:2371–2376

    Article  PubMed  PubMed Central  Google Scholar 

  96. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383

    Article  PubMed  Google Scholar 

  97. Chansangpetch S, Lin SC (2018) Optical coherence tomography angiography in glaucoma care. Curr Eye Res 43:1067–1082

    Article  PubMed  Google Scholar 

  98. Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158

    Article  PubMed  Google Scholar 

  99. Bonini Filho MA, Adhi M, de Carlo TE, Ferrara D, Baumal CR, Witkin AJ, Reichel E, Kuehlewein L, Sadda SR, Sarraf D, Duker JS, Waheed NK (2015) Optical coherence tomography angiography in retinal artery occlusion. Retina 35:2339–2346

    Article  PubMed  Google Scholar 

  100. Kashani AH, Lee SY, Moshfeghi A, Durbin MK, Puliafito CA (2015) Optical coherence tomography angiography of retinal venous occlusion. Retina 35:2323–2331

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qin, J., An, L. (2021). Optical Coherence Tomography for Ophthalmology Imaging. In: Wei, X., Gu, B. (eds) Optical Imaging in Human Disease and Biological Research. Advances in Experimental Medicine and Biology, vol 3233. Springer, Singapore. https://doi.org/10.1007/978-981-15-7627-0_10

Download citation

Publish with us

Policies and ethics