Abstract
Optical coherence tomography (OCT) is a depth-resolved imaging modality, which is able to achieve micrometer-scale resolution within biological tissue noninvasively. In the past 30 years, researchers all around the world had made several essential efforts on techniques relevant to OCT. OCT has become a routine process for eye diseases with different types. In this chapter, the three important stages in the development of OCT are briefly illustrated, including the time domain OCT (TD-OCT), the frequency domain OCT (FD-OCT) and the optical coherence tomography angiography (OCTA). Each of the technique has made great progress for use on living human eye imaging in clinical applications. TD-OCT was first proposed and commercialized, which is able to achieve acceptable 2D depth-resolved cross-sectional images of human retina in vivo. FD-OCT was the upgraded OCT technique compared with TD-OCT. By capturing the coherent signal within the Fourier space, the FD-OCT could improve the image sensitivity compared with TD-OCT, and achieve dozens of kilo hertz imaging speed. OCTA is the newest developments of OCT technique, which is able to visualize the micro vasculature networks of human retina in vivo. With OCTA technique, the newest ophthalmologic OCT system is able to achieve detailed diagnosis for both micro-structure and vasculature abnormalities for clinical applications. The further development of OCT technique on imaging speed, contrast, resolution, field of view, and so on will make OCT to be a more powerful tool for clinical usages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181
Fercher AF (2010) Optical coherence tomography- development, principles, applications. Z Med Phys 20:251–276
Tomlins PH, Wang RK (2005) Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 38:17
Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188
de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069
Leitgeb R, Hitzenberger C, Fercher A (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894
Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG (1999) In vivo ultrahigh-resolution optical coherence tomography. Opt Lett 24:1221–1223
Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7:502–507
An L, Li P, Shen TT, Wang R (2011) High speed spectral domain optical coherence tomography for retinal imaging at 500,000 Alines per second. Biomed Opt Express 2:2770–2783
An L, Guan G, Wang RK (2011) High-speed 1310 nm-band spectral domain optical coherence tomography at 184,000 lines per second. J Biomed Opt 16:060506
Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18:14685–14704
An L, Wang RK (2007) Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. Opt Lett 32:3423–3425
Baumann B, Pircher M, Gotzinger E, Hitzenberger CK (2007) Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt Express 15:13375–13387
Tsai TH, Potsaid B, Tao YK, Jayaraman V, Jiang J, Heim PJ, Kraus MF, Zhou C, Hornegger J, Mashimo H, Cable AE, Fujimoto JG (2013) Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed Opt Express 4:1119–1132
Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, Ranka JK, Windeler RS (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett 26:608–610
Kowalevicz A, Ko T, Hartl I, Fujimoto J, Pollnau M, Salathe R (2002) Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt Express 10:349–353
Yun S, Tearney G, Bouma B, Park B, de Boer J (2003) High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt Express 11:3598–3604
Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG (2006) High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113:2054.e2051–2054.e2014
Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher AF (2002) Full range complex spectral optical coherence tomography technique in eye imaging. Opt Lett 27:1415–1417
Baba T, Hirose A, Kawazoe Y, Mochizuki M (2003) Optical coherence tomography for retinal detachment with a macular hole in a highly myopic eye. Ophthalmic Surg Lasers Imaging 34:483–484
Chen HY, Wang TH, Lee YM, Hung TJ (2005) Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc 104:927–934
Ho J, Witkin AJ, Liu J, Chen Y, Fujimoto JG, Schuman JS, Duker JS (2011) Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118:687–693
Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang IK (2013) Optical coherence tomography - 15 years in cardiology. Circ J 77:1933–1940
Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K (2005) Applications of optical coherence tomography in dermatology. J Dermatol Sci 40:85–94
Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF (2004) Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol 123:458–463
Patel DV, McGhee CN (2013) Quantitative analysis of in vivo confocal microscopy images: a review. Surv Ophthalmol 58:466–475
Patel DV, Zhang J, McGhee CN (2019) In vivo confocal microscopy of the inflamed anterior segment: a review of clinical and research applications. Clin Exp Ophthalmol 47:334–345
Mumcuoglu T, Wollstein G, Wojtkowski M, Kagemann L, Ishikawa H, Gabriele ML, Srinivasan V, Fujimoto JG, Duker JS, Schuman JS (2008) Improved visualization of glaucomatous retinal damage using high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 115:782–789.e782
Chen Y, Vuong LN, Liu J, Ho J, Srinivasan VJ, Gorczynska I, Witkin AJ, Duker JS, Schuman J, Fujimoto JG (2009) Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration. Opt Express 17:4046–4060
Ebneter A, Gekkiev B, Chanana B, Wolf S, Zinkernagel MS (2015) The presence of intra- or subretinal fluid during the loading phase in the treatment of exudative age-related macular degeneration with intravitreal ranibizumab assessed by optical coherence tomography. Ophthalmologica 234:61–66
Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS (2006) Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 90:191–197
Wang Y, Li SY, Zhu M, Chen SJ, Liu Y, Men XH, Gillies M, Larsson J (2005) Metamorphopsia after successful retinal detachment surgery: an optical coherence tomography study. Acta Ophthalmol Scand 83:168–171
Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME (1999) High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 82:128–133
Strom C, Sander B, Larsen N, Larsen M, Lund-Andersen H (2002) Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 43:241–245
Giovannini A, Amato G, Mariotti C (2002) The macular thickness and volume in glaucoma: an analysis in normal and glaucomatous eyes using OCT. Acta Ophthalmol Scand Suppl 236:34–36
Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463
Choma M, Sarunic M, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189
Spaide RF, Fujimoto JG, Waheed NK (2015) Optical coherence tomography angiography. Retina 35:2161–2162
Nehemy MB, Brocchi DN, Veloso CE (2015) Optical coherence tomography angiography imaging of quiescent choroidal neovascularization in age-related macular degeneration. Ophthalmic Surg Lasers Imaging Retina 46:1056–1057
Kuehlewein L, Dansingani KK, de Carlo TE, Bonini Filho MA, Iafe NA, Lenis TL, Freund KB, Waheed NK, Duker JS, Sadda SR, Sarraf D (2015) Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration. Retina 35:2229–2235
Danielson BL, Boisrobert CY (1991) Absolute optical ranging using low coherence interferometry. Appl Opt 30:2975–2979
Gerges AS, Jackson DA (1991) A fibre-optic based high temperature probe illuminated by a multimode laser diode. Opt Commun 80:5
Rao YJ, Jackson DA (1994) Prototype fiber-optic-based ultrahigh pressure remote sensor with built-in temperature compensation. Rev Sci Instrum 65:4
Vikram Bhatia KA, Murphy RO, Claus ME, Jones JL, Grace TA, Tran JAG (1996) Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system. Meas Sci Technol 7:4
Brezinski ME, Tearney GJ, Bouma B, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1998) Optical biopsy with optical coherence tomography. Ann N Y Acad Sci 838:68–74
Fujimoto J, Swanson E (2016) The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci 57:OCT1–OCT13
Tearney GJ, Bouma BE, Fujimoto JG (1997) High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt Lett 22:1811–1813
Cense B, Nassif N, Chen T, Pierce M, Yun SH, Park B, Bouma B, Tearney G, de Boer J (2004) Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express 12:2435–2447
Cense B, Chen TC, Nassif N, Pierce MC, Yun SH, Park BH, Bouma BE, Tearney GJ, de Boer JF (2006) Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Bull Soc Belge Ophtalmol (302):123–132
Zhang J, Rao B, Chen Z (2005) Swept source based fourier domain functional optical coherence tomography. Conf Proc IEEE Eng Med Biol Soc 7:7230–7233
Davis AM, Choma MA, Izatt JA (2005) Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. J Biomed Opt 10:064005
Choma MA, Hsu K, Izatt JA (2005) Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J Biomed Opt 10:44009
Nielsen F, Thrane L, Black J, Bjarklev A, Andersen P (2005) Swept wavelength source in the 1 microm range. Opt Express 13:4096–4106
Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500
Folgar FA, Jaffe GJ, Ying GS, Maguire MG, Toth CA, G. Comparison of Age-Related Macular Degeneration Treatments Trials Research (2014) Comparison of optical coherence tomography assessments in the comparison of age-related macular degeneration treatments trials. Ophthalmology 121:1956–1965
Gupta V, Gupta P, Singh R, Dogra MR, Gupta A (2008) Spectral-domain Cirrus high-definition optical coherence tomography is better than time-domain Stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Am J Ophthalmol 145:1018–1022
Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG (2008) Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 49:5103–5110
van Velthoven ME, Verbraak FD, Garcia PM, Schlingemann RO, Rosen RB, de Smet MD (2005) Evaluation of central serous retinopathy with en face optical coherence tomography. Br J Ophthalmol 89:1483–1488
van Velthoven ME, Verbraak FD, Yannuzzi LA, Rosen RB, Podoleanu AG, de Smet MD (2006) Imaging the retina by en face optical coherence tomography. Retina 26:129–136
Mujat M, Chan R, Cense B, Park B, Joo C, Akkin T, Chen T, de Boer J (2005) Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt Express 13:9480–9491
Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R (2008) Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol 146:679–687
Loduca AL, Zhang C, Zelkha R, Shahidi M (2010) Thickness mapping of retinal layers by spectral-domain optical coherence tomography. Am J Ophthalmol 150:849–855
Sung KR, Kim DY, Park SB, Kook MS (2009) Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography. Ophthalmology 116:1264–1270. 1270.e1261
Nunes RP, Gregori G, Yehoshua Z, Stetson PF, Feuer W, Moshfeghi AA, Rosenfeld PJ (2013) Predicting the progression of geographic atrophy in age-related macular degeneration with SD-OCT en face imaging of the outer retina. Ophthalmic Surg Lasers Imaging Retina 44:344–359
Sikorski BL, Malukiewicz G, Stafiej J, Lesiewska-Junk H, Raczynska D (2013) The diagnostic function of OCT in diabetic maculopathy. Mediat Inflamm 2013:434560
Menke MN, Dabov S, Knecht P, Sturm V (2011) Reproducibility of retinal thickness measurements in patients with age-related macular degeneration using 3D Fourier-domain optical coherence tomography (OCT) (Topcon 3D-OCT 1000). Acta Ophthalmol 89:346–351
Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, He J, Lai GW, Li T, Lam DS (2010) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology 117:1684–1691
Witkin AJ, Vuong LN, Srinivasan VJ, Gorczynska I, Reichel E, Baumal CR, Rogers AH, Schuman JS, Fujimoto JG, Duker JS (2009) High-speed ultrahigh resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration. Ophthalmology 116:956–963
Henschel A, Spital G, Lommatzsch A, Pauleikhoff D (2018) Optical coherence tomography in neovascular age-related macular degeneration compared to fluorescein angiography and visual acuity. Eur J Ophthalmol 19:5
Jain A, Desai RU, Charalel RA, Quiram P, Yannuzzi L, Sarraf D (2009) Solar retinopathy: comparison of optical coherence tomography (OCT) and fluorescein angiography (FA). Retina 29:1340–1345
Papadia M, Misteli M, Jeannin B, Herbort CP (2014) The influence of anti-VEGF therapy on present day management of macular edema due to BRVO and CRVO: a longitudinal analysis on visual function, injection time interval and complications. Int Ophthalmol 34:1193–1201
An L, Qin J, Wang RK (2010) Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express 18:8220–8228
An L, Shen TT, Wang RK (2011) Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. J Biomed Opt 16:106013
Wang RK, An L, Francis P, Wilson DJ (2010) Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt Lett 35:1467–1469
Wang RK, An L (2011) Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate. J Biomed Opt 16:050503
Keiner CM, Zhou H, Zhang Q, Wang RK, Rinella NT, Oldenburg CE, Duncan JL, Schwartz DM (2019) Quantifying choriocapillaris hypoperfusion in patients with choroidal neovascularization using swept-source OCT angiography. Clin Ophthalmol 13:1613–1620
Zhang Q, Rezaei KA, Saraf SS, Chu Z, Wang F, Wang RK (2018) Ultra-wide optical coherence tomography angiography in diabetic retinopathy. Quant Imaging Med Surg 8:743–753
Richter GM, Sylvester B, Chu Z, Burkemper B, Madi I, Chang R, Reznik A, Varma R, Wang RK (2018) Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clin Ophthalmol 12:2285–2296
Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, Shi Y, Wang RK (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100
Fingler J, Schwartz D, Yang C, Fraser SE (2007) Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express 15:12636–12653
Kim DY, Fingler J, Werner JS, Schwartz DM, Fraser SE, Zawadzki RJ (2011) In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed Opt Express 2:1504–1513
Hong Y, Makita S, Yamanari M, Miura M, Kim S, Yatagai T, Yasuno Y (2007) Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express 15:7538–7550
Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725
Ratnapriya R, Chew EY (2013) Age-related macular degeneration-clinical review and genetics update. Clin Genet 84:160–166
Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444
Miere A, Querques G, Semoun O, El Ameen A, Capuano V, Souied EH (2015) Optical coherence tomography angiography in early type 3 neovascularization. Retina 35:2236–2241
Roisman L, Zhang Q, Wang RK, Gregori G, Zhang A, Chen CL, Durbin MK, An L, Stetson PF, Robbins G, Miller A, Zheng F, Rosenfeld PJ (2016) Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 123:1309–1319
El Ameen A, Cohen SY, Semoun O, Miere A, Srour M, Quaranta-El Maftouhi M, Oubraham H, Blanco-Garavito R, Querques G, Souied EH (2015) Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina 35:2212–2218
Kuehlewein L, Sadda SR, Sarraf D (2015) OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy. Eye (Lond) 29:932–935
Mohamed Q, Gillies MC, Wong TY (2007) Management of diabetic retinopathy: a systematic review. JAMA 298:902–916
de Carlo TE, Chin AT, Bonini Filho MA, Adhi M, Branchini L, Salz DA, Baumal CR, Crawford C, Reichel E, Witkin AJ, Duker JS, Waheed NK (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370
Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T, Rosen RB (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35:2353–2363
Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH (2015) Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 46:796–805
Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160:35–44.e31
Hwang TS, Jia Y, Gao SS, Bailey ST, Lauer AK, Flaxel CJ, Wilson DJ, Huang D (2015) Optical coherence tomography angiography features of diabetic retinopathy. Retina 35:2371–2376
Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35:2377–2383
Chansangpetch S, Lin SC (2018) Optical coherence tomography angiography in glaucoma care. Curr Eye Res 43:1067–1082
Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158
Bonini Filho MA, Adhi M, de Carlo TE, Ferrara D, Baumal CR, Witkin AJ, Reichel E, Kuehlewein L, Sadda SR, Sarraf D, Duker JS, Waheed NK (2015) Optical coherence tomography angiography in retinal artery occlusion. Retina 35:2339–2346
Kashani AH, Lee SY, Moshfeghi A, Durbin MK, Puliafito CA (2015) Optical coherence tomography angiography of retinal venous occlusion. Retina 35:2323–2331
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Qin, J., An, L. (2021). Optical Coherence Tomography for Ophthalmology Imaging. In: Wei, X., Gu, B. (eds) Optical Imaging in Human Disease and Biological Research. Advances in Experimental Medicine and Biology, vol 3233. Springer, Singapore. https://doi.org/10.1007/978-981-15-7627-0_10
Download citation
DOI: https://doi.org/10.1007/978-981-15-7627-0_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-7626-3
Online ISBN: 978-981-15-7627-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)