可调带隙硫硒化锑薄膜及太阳电池的研究进展
作者:
作者单位:

1.东北电力大学 现代电力系统仿真控制与绿色电能新技术教育部重点实验室 电气工程学院 化学工程学院,吉林 吉林 132012;2.南开大学 电子信息与光学工程学院,天津 300350;3.华东师范大学 纳光电集成与先进装备教育部工程研究中心 极化材料与器件教育部重点实验室,上海200241;4.中国科学院上海技术物理研究所 红外物理国家重点实验室,上海200083;5.复旦大学 光电研究院 上海市智能光电与感知前沿科学研究基地,上海 200433

作者简介:

通讯作者:

中图分类号:

TM914.4

基金项目:

国家自然科学基金(52172185,51772049);吉林省自然科学基金(YDZJ202201ZYTS390);吉林省教育厅科技项目(JJKH20220110KJ);城市轨道交通数字化建设与评估国家工程实验室(2021HJ05);上海市自然科学基金项目(20ZR1417400)


Research progress on tunable band gap antimony sulfoselenide thin films and solar cells
Author:
Affiliation:

1.Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, School of Electrical Engineering, School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China;2.College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;3.Nanophotonics and Advanced Instrument Engineering Research Center, Ministry of Education, Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China;4.National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;5.Institute of Optoelectronics, Shanghai Frontier Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China

Fund Project:

Supported by the National Natural Science Foundation of China (52172185, 51772049); the Science and Technology Project of the Education Department of Jilin Province (JJKH20220110KJ); the Natural Science Foundation of Jilin Province (YDZJ202201ZYTS390), the National Engineering Laboratory for Digital Construction and Evaluation of Urban Rail transit (2021HJ05), and Natural Science Foundation of Shanghai (20ZR1417400)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    硫硒化锑(Sb2(S,Se)3)薄膜太阳电池因其制备方法简单、原材料丰富且低毒、性能稳定等本征优势成为研究热点。目前Sb2(S,Se)3太阳电池最高效率已超过10%,显示出产业化潜力。Sb2(S,Se)3太阳电池的研究重点是提高吸光层质量和优化器件结构。首先,系统介绍了Sb2(S,Se)3薄膜的主流生长工艺;其次,对Sb2(S,Se)3太阳电池各功能层选择和渐变带隙结构设计进行分析;最后,对Sb2(S,Se)3太阳电池的大面积制备和其在锑基多结叠层太阳电池中的应用潜力做了进一步展望,为其产业化发展提供可行性参考。

    Abstract:

    Antimony selenosulfide (Sb2(S,Se)3) thin film solar cells have become a research hot spot in recent years due to their simple preparation method, abundant raw materials, low toxicity, stable performance, etc. Their power conversion efficiencies have exceeded 10%, showing the potential for industrialization. The research focus on Sb2(S,Se)3 solar cells is to improve the quality of the absorption layer and optimize the device structure. Firstly, the mainstream growth process of Sb2(S,Se)3 thin film is systematically introduced. Secondly, the selection of each functional layer and the gradient bandgap structure of Sb2(S,Se)3 solar cells are analyzed. Finally, the large-scale preparation of Sb2(S,Se)3 solar cells and their application potential in antimony-based multi-junction solar cells are further prospected to provide a feasible reference for promoting the industrialization of Sb2(S,Se)3 solar cells.

    参考文献
    相似文献
    引证文献
引用本文

曹宇,武颖,周静,倪牮,张建军,陶加华,褚君浩.可调带隙硫硒化锑薄膜及太阳电池的研究进展[J].红外与毫米波学报,2023,42(3):311~326]. CAO Yu, WU Ying, ZHOU Jing, NI Jian, ZHANG Jian-Jun, TAO Jia-Hua, CHU Jun-Hao. Research progress on tunable band gap antimony sulfoselenide thin films and solar cells[J]. J. Infrared Millim. Waves,2023,42(3):311~326.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-07
  • 最后修改日期:2023-03-31
  • 录用日期:2022-12-06
  • 在线发布日期: 2023-03-30
  • 出版日期: