Volume 1 Issue 2
Sep.  2022
Turn off MathJax
Article Contents
Feifei CHEN, Aziguli MAIHEMAITI, Wenjing WANG, Peng LIU. Novel agents for multiple myeloma with extramedullary disease[J]. Clinical Cancer Bulletin, 2022, 1(2): 107-115. doi: 10.11910/j.issn.2791-3937.2022.20220013
Citation: Feifei CHEN, Aziguli MAIHEMAITI, Wenjing WANG, Peng LIU. Novel agents for multiple myeloma with extramedullary disease[J]. Clinical Cancer Bulletin, 2022, 1(2): 107-115. doi: 10.11910/j.issn.2791-3937.2022.20220013

Novel agents for multiple myeloma with extramedullary disease

doi: 10.11910/j.issn.2791-3937.2022.20220013
Funds:  This work was sponsored by the Natural Science Foundation of Shanghai (22ZR1411400).
More Information
  • Corresponding author: MD, Ph.D Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. E-mail: liu.peng@zs-hospital.sh.cn
  • Received Date: 09 Aug 2022
  • Accepted Date: 20 Sep 2022
  • Available Online: 01 Sep 2022
  • Publish Date: 25 Sep 2022
  • Multiple myeloma (MM) is the second most common hematological malignancy. The introduction of proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs) greatly improved the outcomes for these patients. Extramedullary disease (EMD), an aggressive manifestation of MM, remains a significant treatment challenge. Recently, active clinical development of remarkable novel agents for MM with new mechanisms of action has begun. These agents show promising anti-MM effects and provide the opportunity to extend the survival of patients. They include next-generation PIs and IMiDs; monoclonal antibodies; chimeric antigen receptor T cells; antibody-drug conjugates; bispecific T cell engager antibodies; and small molecular inhibitors. However, few clinical trials have focused on patients with EMD, and the effectiveness of these agents has not been well evaluated and compared in these patients. In this review, we summarize the efficacy of these novel agents in MM patients with EMD.

     

  • loading
  • F-FC, AM, and W-J W drafted and edited the work. PL designed the study and approved the final version. All authors reviewed the manuscript.

    None

  • [1]
    Bansal R, Rakshit S, Kumar S. Extramedullary disease in multiple myeloma. Blood Cancer J, 2021, 11: 161. doi: 10.1038/s41408-021-00527-y
    [2]
    Blade J, Fernandez de Larrea C, Rosinol L, Cibeira MT, Jimenez R, Powles R. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol, 2011, 29: 3805–3812. doi: 10.1200/JCO.2011.34.9290
    [3]
    Rosinol L, Beksac M, Zamagni E, et al. Expert review on soft-tissue plasmacytomas in multiple myeloma: definition, disease assessment and treatment considerations. Br J Haematol, 2021, 194: 496–507. doi: 10.1111/bjh.17338
    [4]
    Azab AK, Quang P, Azab F, et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood, 2012, 119: 1468–1478. doi: 10.1182/blood-2011-07-368050
    [5]
    Chang H, Bartlett ES, Patterson B, Chen CI, Yi QL. The absence of CD56 on malignant plasma cells in the cerebrospinal fluid is the hallmark of multiple myeloma involving central nervous system. Br J Haematol, 2005, 129: 539–541. doi: 10.1111/j.1365-2141.2005.05493.x
    [6]
    Eisterer W, Bechter O, Hilbe W, et al. CD44 isoforms are differentially regulated in plasma cell dyscrasias and CD44v9 represents a new independent prognostic parameter in multiple myeloma. Leuk Res, 2001, 25: 1051–1057. doi: 10.1016/S0145-2126(01)00075-3
    [7]
    Hedvat CV, Comenzo RL, Teruya-Feldstein J, et al. Insights into extramedullary tumour cell growth revealed by expression profiling of human plasmacytomas and multiple myeloma. Br J Haematol, 2003, 122: 728–744. doi: 10.1046/j.1365-2141.2003.04481.x
    [8]
    Roccaro AM, Mishima Y, Sacco A, et al. CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Rep, 2015, 12: 622–635. doi: 10.1016/j.celrep.2015.06.059
    [9]
    Azab AK, Hu J, Quang P, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood, 2012, 119: 5782–5794. doi: 10.1182/blood-2011-09-380410
    [10]
    Billecke L, Murga Penas EM, May AM, et al. Cytogenetics of extramedullary manifestations in multiple myeloma. Br J Haematol, 2013, 161: 87–94. doi: 10.1111/bjh.12223
    [11]
    Touzeau C, Moreau P. How I treat extramedullary myeloma. Blood, 2016, 127: 971–976. doi: 10.1182/blood-2015-07-635383
    [12]
    Montefusco V, Gay F, Spada S, et al. Outcome of paraosseous extra-medullary disease in newly diagnosed multiple myeloma patients treated with new drugs. Haematologica, 2020, 105: 193–200. doi: 10.3324/haematol.2019.219139
    [13]
    Gagelmann N, Eikema DJ, Iacobelli S, et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: a study from the Chronic Malignancies Working Party of the EBMT. Haematologica, 2018, 103: 890–897. doi: 10.3324/haematol.2017.178434
    [14]
    Bhutani M, Foureau DM, Atrash S, Voorhees PM, Usmani SZ. Extramedullary multiple myeloma. Leukemia, 2020, 34: 1–20. doi: 10.1038/s41375-019-0660-0
    [15]
    Huynh T, Corre E, Lemonnier MP, et al. Role of D(T)PACE-based regimens as treatment of multiple myeloma with extramedullary relapse or refractory disease. Leuk Lymphoma, 2021, 62: 2235–2241. doi: 10.1080/10428194.2021.1907373
    [16]
    Li X, Sun W, Jin F, et al. [Clinical observation of DECP combination chemotherapy for relapsing and refractory multiple myeloma patients with extramedullary plasmacytomas]. Zhonghua Yi Xue Za Zhi, 2014, 94: 1258–1260.
    [17]
    Rasche L, Strifler S, Duell J, et al. The lymphoma-like polychemotherapy regimen "Dexa-BEAM" in advanced and extramedullary multiple myeloma. Ann Hematol, 2014, 93: 1207–1214. doi: 10.1007/s00277-014-2023-2
    [18]
    Kumar S, Sharma A, Malik PS, et al. Bendamustine in combination with pomalidomide and dexamethasone in relapsed/refractory multiple myeloma: A phase II trial. Br J Haematol, 2022, 198: 288–297. doi: 10.1111/bjh.18200
    [19]
    Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics, 2017, 7: 1589–1597. doi: 10.7150/thno.19050
    [20]
    Beksac M, Seval GC, Kanellias N, et al. A real world multicenter retrospective study on extramedullary disease from Balkan Myeloma Study Group and Barcelona University: analysis of parameters that improve outcome. Haematologica, 2020, 105: 201–208. doi: 10.3324/haematol.2019.219295
    [21]
    He J, Yue X, He D, et al. Multiple Extramedullary-Bone Related and/or Extramedullary Extraosseous Are Independent Poor Prognostic Factors in Patients With Newly Diagnosed Multiple Myeloma. Front Oncol, 2021, 11: 668099. doi: 10.3389/fonc.2021.668099
    [22]
    Avet-Loiseau H, Bahlis NJ, Chng WJ, et al. Ixazomib significantly prolongs progression-free survival in high-risk relapsed/refractory myeloma patients. Blood, 2017, 130: 2610–2618. doi: 10.1182/blood-2017-06-791228
    [23]
    Minarik J, Pika T, Radocha J, et al. Survival benefit of ixazomib, lenalidomide and dexamethasone (IRD) over lenalidomide and dexamethasone (Rd) in relapsed and refractory multiple myeloma patients in routine clinical practice. BMC Cancer, 2021, 21: 73. doi: 10.1186/s12885-020-07732-1
    [24]
    Weisel K, Mateos MV, Gay F, et al. Efficacy and safety profile of deep responders to carfilzomib-based therapy: a subgroup analysis from ASPIRE and ENDEAVOR. Leukemia, 2021, 35: 1732–1744. doi: 10.1038/s41375-020-01049-5
    [25]
    Zhou X, Fluchter P, Nickel K, et al. Carfilzomib Based Treatment Strategies in the Management of Relapsed/Refractory Multiple Myeloma with Extramedullary Disease. Cancers (Basel), 2020: 12.
    [26]
    Muchtar E, Gatt ME, Rouvio O, et al. Efficacy and safety of salvage therapy using Carfilzomib for relapsed or refractory multiple myeloma patients: a multicentre retrospective observational study. Br J Haematol, 2016, 172: 89–96. doi: 10.1111/bjh.13799
    [27]
    Schey S, Ramasamy K. Pomalidomide therapy for myeloma. Expert Opin Investig Drugs, 2011, 20: 691–700. doi: 10.1517/13543784.2011.567265
    [28]
    Jurczyszyn A, Legiec W, Helbig G, Hus M, Kyrcz-Krzemien S, Skotnicki AB. New drugs in multiple myeloma - role of carfilzomib and pomalidomide. Contemp Oncol (Pozn), 2014, 18: 17–21.
    [29]
    Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia, 2011, 25: 906–908. doi: 10.1038/leu.2011.29
    [30]
    Jimenez-Segura R, Granell M, Gironella M, et al. Pomalidomide-dexamethasone for treatment of soft-tissue plasmacytomas in patients with relapsed / refractory multiple myeloma. Eur J Haematol, 2019, 102: 389–394. doi: 10.1111/ejh.13217
    [31]
    Li Y, Ji J, Lu H, Li J, Qu X. Pomalidomide-based therapy for extramedullary multiple myeloma. Hematology, 2022, 27: 88–94. doi: 10.1080/16078454.2021.2019364
    [32]
    Giri S, Grimshaw A, Bal S, et al. Evaluation of Daratumumab for the Treatment of Multiple Myeloma in Patients With High-risk Cytogenetic Factors: A Systematic Review and Meta-analysis. JAMA Oncol, 2020, 6: 1759–1765. doi: 10.1001/jamaoncol.2020.4338
    [33]
    Jelinek T, Sevcikova T, Zihala D, et al. Limited efficacy of daratumumab in multiple myeloma with extramedullary disease. Leukemia, 2022, 36: 288–291. doi: 10.1038/s41375-021-01343-w
    [34]
    Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N Engl J Med, 2015, 373: 1207–1219. doi: 10.1056/NEJMoa1506348
    [35]
    Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet, 2016, 387: 1551–1560. doi: 10.1016/S0140-6736(15)01120-4
    [36]
    Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood, 2016, 128: 37–44.
    [37]
    Liu J, He HY, Li L, et al. [The efficacy and safety of daratumumab in relapsed and refractory multiple myeloma]. Zhonghua Xue Ye Xue Za Zhi, 2021, 42: 27–32.
    [38]
    Byun JM, Min C-K, Kim K, et al. P894: A PHASE II TRIAL TO EVALUATE THE EFFICACY OF DARATUMUMAB WITH DCEP IN RELAPSED/REFRACTORY MULTIPLE MYELOMA PATIENTS WITH EXTRAMEDULLARY DISEASE AFTER BORTEZOMIB BASED TREATMENT. HemaSphere, 2022, 6: 785–786. doi: 10.1097/01.HS9.0000846448.12828.50
    [39]
    Moreno DF, Clapes V, Soler JA, et al. Real-World Evidence of Daratumumab Monotherapy in Relapsed/Refractory Multiple Myeloma Patients and Efficacy on Soft-Tissue Plasmacytomas. Clin Lymphoma Myeloma Leuk, 2022, 22: 635–642. doi: 10.1016/j.clml.2022.04.014
    [40]
    Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet, 2019, 394: 2096–2107. doi: 10.1016/S0140-6736(19)32556-5
    [41]
    Beksac M, Richardson P, Unal A, Corradini P, DeLimpasi S, Gulbas Z. Isatuximab plus pomalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma and soft-tissue plasmacytomas: ICARIA-MM subgroup analysis. European Hematology Association Congress (EHA 25), Virtual; 2020.
    [42]
    Wang Y, Sanchez L, Siegel DS, Wang ML. Elotuzumab for the treatment of multiple myeloma. J Hematol Oncol, 2016, 9: 55. doi: 10.1186/s13045-016-0284-z
    [43]
    Danhof S, Rasche L, Mottok A, et al. Elotuzumab for the treatment of extramedullary myeloma: a retrospective analysis of clinical efficacy and SLAMF7 expression patterns. Ann Hematol, 2021, 100: 1537–1546. doi: 10.1007/s00277-021-04447-6
    [44]
    Danhof S, Strifler S, Hose D, et al. Clinical and biological characteristics of myeloma patients influence response to elotuzumab combination therapy. J Cancer Res Clin Oncol, 2019, 145: 561–571. doi: 10.1007/s00432-018-2807-1
    [45]
    Sanchez E, Li M, Kitto A, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol, 2012, 158: 727–738. doi: 10.1111/j.1365-2141.2012.09241.x
    [46]
    Tai YT, Acharya C, An G, et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood, 2016, 127: 3225–3236. doi: 10.1182/blood-2016-01-691162
    [47]
    Sanchez E, Gillespie A, Tang G, et al. Soluble B-Cell Maturation Antigen Mediates Tumor-Induced Immune Deficiency in Multiple Myeloma. Clin Cancer Res, 2016, 22: 3383–3397. doi: 10.1158/1078-0432.CCR-15-2224
    [48]
    Lee L, Bounds D, Paterson J, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol, 2016, 174: 911–922. doi: 10.1111/bjh.14145
    [49]
    Zhang L, Shen X, Yu W, et al. Comprehensive meta-analysis of anti-BCMA chimeric antigen receptor T-cell therapy in relapsed or refractory multiple myeloma. Ann Med, 2021, 53: 1547–1559. doi: 10.1080/07853890.2021.1970218
    [50]
    Que Y, Xu M, Xu Y, et al. Anti-BCMA CAR-T Cell Therapy in Relapsed/Refractory Multiple Myeloma Patients With Extramedullary Disease: A Single Center Analysis of Two Clinical Trials. Front Immunol, 2021, 12: 755866. doi: 10.3389/fimmu.2021.755866
    [51]
    Li W, Liu M, Yuan T, Yan L, Cui R, Deng Q. Efficacy and follow-up of humanized anti-BCMA CAR-T cell therapy in relapsed/refractory multiple myeloma patients with extramedullary-extraosseous, extramedullary-bone related, and without extramedullary disease. Hematol Oncol, 2022, 40: 223–232. doi: 10.1002/hon.2958
    [52]
    Brudno JN, Maric I, Hartman SD, et al. T Cells Genetically Modified to Express an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Poor-Prognosis Relapsed Multiple Myeloma. J Clin Oncol, 2018, 36: 2267–2280. doi: 10.1200/JCO.2018.77.8084
    [53]
    Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med, 2019, 380: 1726–1737. doi: 10.1056/NEJMoa1817226
    [54]
    Munshi NC, Anderson LD, Jr. , Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med, 2021, 384: 705–716. doi: 10.1056/NEJMoa2024850
    [55]
    Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest, 2019, 129: 2210–2221. doi: 10.1172/JCI126397
    [56]
    Li C, Wang D, Song Y, et al. S187: UPDATED PHASE 1/2 DATA OF SAFETY AND EFFICACY OF CT103A, FULLY HUMAN BCMA-DIRECTED CAR T CELLS, IN RELAPSED/REFRACTORY MULTIPLE MYELOMA. HemaSphere, 2022, 6: 88–89. doi: 10.1097/01.HS9.0000843640.50080.cc
    [57]
    Jiang H, Dong B, Gao L, et al. Clinical results of a multicenter study of the first-in-human dual BCMA and CD19 targeted novel platform fast CAR-T cell therapy for patients with relapsed/refractory multiple myeloma. Blood, 2020, 136: 25–26.
    [58]
    Tang Y, Yin H, Zhao X, et al. High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma. J Exp Clin Cancer Res, 2022, 41: 2. doi: 10.1186/s13046-021-02214-z
    [59]
    Li C, Wang X, Wu Z, et al. P977: BISPECIFIC CS1-BCMA CAR-T CELLS ARE CLINICALLY ACTIVE IN RELAPSED OR REFRACTORY MULTIPLE MYELOMA. HemaSphere, 2022, 6: 867–868. doi: 10.1097/01.HS9.0000846776.32793.6f
    [60]
    Gagelmann N, Ayuk F, Atanackovic D, Kroger N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: A meta-analysis. Eur J Haematol, 2020, 104: 318–327. doi: 10.1111/ejh.13380
    [61]
    Wang Y, Cao J, Gu W, et al. Long-Term Follow-Up of Combination of B-Cell Maturation Antigen and CD19 Chimeric Antigen Receptor T Cells in Multiple Myeloma. J Clin Oncol, 2022, 40: 2246–2256. doi: 10.1200/JCO.21.01676
    [62]
    Zhang M, Zhou L, Zhao H, et al. Risk Factors Associated with Durable Progression-Free Survival in Patients with Relapsed or Refractory Multiple Myeloma Treated with Anti-BCMA CAR T-cell Therapy. Clin Cancer Res, 2021, 27: 6384–6392. doi: 10.1158/1078-0432.CCR-21-2031
    [63]
    Huang H, Hu Y, Zhang M, et al. Phase I open-label single arm study of GPRC5D CAR T-cells (OriCAR-017) in patients with relapsed/refractory multiple myeloma (POLARIS). American Society of Clinical Oncology; 2022.
    [64]
    Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol, 2020, 21: 207–221. doi: 10.1016/S1470-2045(19)30788-0
    [65]
    Suvannasankha A, Bahlis N, Trudel S, et al. P940: SAFETY AND CLINICAL ACTIVITY OF BELANTAMAB MAFODOTIN WITH PEMBROLIZUMAB IN PATIENTS WITH RELAPSED/REFRACTORY MULTIPLE MYELOMA (RRMM): DREAMM-4 STUDY. HemaSphere, 2022, 6: 830–831. doi: 10.1097/01.HS9.0000846628.17113.b2
    [66]
    Madduri D, Rosko A, Brayer J, et al. REGN5458, a BCMA x CD3 bispecific monoclonal antibody, induces deep and durable responses in patients with relapsed/refractory multiple myeloma (RRMM). Blood, 2020, 136: 41–42.
    [67]
    Delforge M, Usmani SZ, van de Donk NW, et al. COMPARISON OF TECLISTAMAB WITH BELANTAMAB MAFODOTIN IN PATIENTS WITH TRIPLE-CLASS EXPOSED RELAPSED/REFRACTORY MULTIPLE MYELOMA USING MATCHING-ADJUSTED INDIRECT TREATMENT COMPARISON. HemaSphere, 2022, 6: 789–790.
    [68]
    Chari A, Vogl DT, Gavriatopoulou M, et al. Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma. N Engl J Med, 2019, 381: 727–738. doi: 10.1056/NEJMoa1903455
    [69]
    Yee AJ, Huff CA, Chari A, et al. Response to therapy and the effectiveness of treatment with selinexor and dexamethasone in patients with penta-exposed triple-class refractory myeloma who had plasmacytomas. American Society of Hematology Washington, DC; 2019.
    [70]
    Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood, 2005, 105: 317–323. doi: 10.1182/blood-2004-03-0833
    [71]
    Andrulis M, Lehners N, Capper D, et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov, 2013, 3: 862–869. doi: 10.1158/2159-8290.CD-13-0014
    [72]
    Mey UJM, Renner C, von Moos R. Vemurafenib in combination with cobimetinib in relapsed and refractory extramedullary multiple myeloma harboring the BRAF V600E mutation. Hematol Oncol, 2017, 35: 890–893. doi: 10.1002/hon.2353
    [73]
    Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol, 2021, 14: 161. doi: 10.1186/s13045-021-01170-7
    [74]
    Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A, 2019, 116: 9543–9551. doi: 10.1073/pnas.1819745116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article Views(316) PDF Downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return