常温和100~800 MPa压力下石膏的Raman光谱研究

杨玉萍 郑海飞

杨玉萍, 郑海飞. 常温和100~800 MPa压力下石膏的Raman光谱研究[J]. 高压物理学报, 2006, 20(1): 25-28 . doi: 10.11858/gywlxb.2006.01.006
引用本文: 杨玉萍, 郑海飞. 常温和100~800 MPa压力下石膏的Raman光谱研究[J]. 高压物理学报, 2006, 20(1): 25-28 . doi: 10.11858/gywlxb.2006.01.006
YANG Yu-Ping, ZHENG Hai-Fei. Research on the Raman Spectra of Gypsum at Pressure of 100~800 MPa and Room Temperature[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 25-28 . doi: 10.11858/gywlxb.2006.01.006
Citation: YANG Yu-Ping, ZHENG Hai-Fei. Research on the Raman Spectra of Gypsum at Pressure of 100~800 MPa and Room Temperature[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 25-28 . doi: 10.11858/gywlxb.2006.01.006

常温和100~800 MPa压力下石膏的Raman光谱研究

doi: 10.11858/gywlxb.2006.01.006
详细信息
    通讯作者:

    郑海飞

Research on the Raman Spectra of Gypsum at Pressure of 100~800 MPa and Room Temperature

More Information
    Corresponding author: ZHENG Hai-Fei
  • 摘要: 利用金刚石压腔装置测量了高压下石膏中SO键的4种振动模式和结晶水中羟基伸缩振动Raman位移,研究结果表明:在常温(25 ℃)和100~800 MPa压力范围内,石膏中SO键的Raman谱峰的位移随压力的增加而向高波数方向移动,结晶水中羟基的两个伸缩谱峰随着压力的增加而向低波数方向移动,同时得到了各个谱峰与压力之间的关系式,其中结晶水中羟基的两个伸缩谱峰的d/dp值有较大不同,是由于结晶水中含有两个强度不同的氢键所致。

     

  • Couty R, Velde B, Besson J M. Raman Spectra of Gypsum under Pressure [J]. Phys Chem Miner, 1983, 10: 89-93.
    Knittle E, Phillips W, Williams Q . An Infrared and Raman Spectroscopic Study of Gypsum at High Pressures [J]. Phys Chem Miner, 2001, 28: 630-634.
    Schmidt C, Ziemann M A . In-Situ Raman Spectroscopy of Quartz: A Pressure Sentor for Hydrothermal Diamond-Anvil Cell Experiments at Elevated Temperatures [J]. American Mineralogist, 2000, 85: 1725-1734.
    Zheng H F, Sun Q, Zhao J, et al. Comment on the Pressure Gauge for the Experiments at High Temperature and High Pressure with DAC [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 78-82. (in Chinese)
    郑海飞, 孙樯, 赵金, 等. 金刚石压腔高温高压实验的压力标定方法及其现状 [J]. 高压物理学报, 2004, 18(1): 78-82.
    Zhao J, Zheng H F. Reaserch on Raman Spectra of Calcite at Pressure of 0.1~800 MPa [J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 226-229. ( in Chinese)
    赵金, 郑海飞. 01~800 MPa压力下方解石Raman拉曼的实验研究 [J]. 高压物理学报, 2003, 17(3): 226-229.
    Chen J Y, Zheng H F, Zeng Y Sh, et al. In Situ Raman Spectroscpic Study of Fluid at High Temperature in Synthetic Inclusion [J]. Spectroscopy and Spectral Analysis, 2003, 23: 726-729. ( in Chinese)
    陈晋阳, 郑海飞, 曾贻善, 等. 以合成包裹体为腔体进行高温下流体的拉曼光谱原位分析 [J]. 光谱学与光谱分析, 2003, 23: 726-729.
    Kosztolanyi, Mullis J, Weidmann M. Measurements of the Phase Transformation Temperature of Gypsum-Anhydrite, Included in Quartz, by Microthermometry and Raman Microprobe Techniques [J]. Chem Geol, 1987, 61: 19-28.
    Sarma L P , Prasad P S R, Ravikumar N. Raman Spectroscopic Study of Phase Transitions in Natural Gypsum [J]. J Raman Spectrosc, 1998, 29: 851-856.
    Cole W F, Lancucki C J. A Refinement of the Crystal Structure of Gypsum CaSO42H2O [J]. Acta Crystallogr, 1974, 30: 921-929.
    Moon S, Drickamer H G. Effect of Pressure on Hydrogen Bonding in Organic Solids [J]. J Chem Phys, 1974, 61: 48-54.
    Nakamoto K, Margoshes M, Rundle R E. Stretching Frequencies as a Function of Distances in Hydrogen Bonds [J]. J Am Chem Soc, 1955, 77: 6480-6486.
  • 加载中
计量
  • 文章访问数:  7406
  • HTML全文浏览量:  347
  • PDF下载量:  848
出版历程
  • 收稿日期:  2004-09-21
  • 修回日期:  2005-03-18
  • 发布日期:  2006-03-05

目录

    /

    返回文章
    返回