留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2中激波脱体距离的弹道靶实验测量和数值计算

廖东骏 柳森 黄洁 简和祥 谢爱民 王宗浩

廖东骏, 柳森, 黄洁, 等. CO2中激波脱体距离的弹道靶实验测量和数值计算[J]. 实验流体力学, 2018, 32(3): 69-74, 93. doi: 10.11729/syltlx20170157
引用本文: 廖东骏, 柳森, 黄洁, 等. CO2中激波脱体距离的弹道靶实验测量和数值计算[J]. 实验流体力学, 2018, 32(3): 69-74, 93. doi: 10.11729/syltlx20170157
Liao Dongjun, Liu Sen, Huang Jie, et al. Ballistic range measurement and numerical calculation of shock standoff distances in CO2[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 69-74, 93. doi: 10.11729/syltlx20170157
Citation: Liao Dongjun, Liu Sen, Huang Jie, et al. Ballistic range measurement and numerical calculation of shock standoff distances in CO2[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 69-74, 93. doi: 10.11729/syltlx20170157

CO2中激波脱体距离的弹道靶实验测量和数值计算

doi: 10.11729/syltlx20170157
详细信息
    作者简介:

    廖东骏(1990-), 男, 四川绵阳人, 博士研究生。研究方向:高超声速空气动力学。通信地址:四川省绵阳市二环路南段6号15信箱(621000)。E-mail:il2m32009@126.com

    通讯作者:

    柳森, E-mail:liusen@cardc.cn

  • 中图分类号: O354.4

Ballistic range measurement and numerical calculation of shock standoff distances in CO2

  • 摘要: 在中国空气动力研究与发展中心超高速所超高速弹道靶进行了CO2条件下圆球和火星着陆巡视器模型的激波脱体距离测量实验,为数值模拟提供验证依据。实验模型为φ10mm圆球和头部半径12.5mm的着陆巡视器模型。圆球模型的飞行速度为2.122~4.220km/s,靶室压力为2.42~12.30kPa;着陆巡视器模型的飞行速度为2.802km/s,对应靶室压力为1.836kPa。实验数据与采用双温度非平衡模型计算的结果进行了对比。得到以下结论:采用双温度非平衡模型能够较准确地再现模型头部激波脱体距离;根据计算结果推测绕模型流动主要为非平衡流动;需补充更高模型飞行速度(>5km/s)的实验数据,验证CO2中更高流速状态下双温度非平衡模型的适用性与准确性,并进一步研究多温度模型和不同化学反应动力模型对CO2下非平衡流数值计算准确性的影响。
  • 图  1  弹道靶实验布置示意图

    Figure  1.  Schematic of the arrangement of the ballistic range test

    图  2  阴影成像光路示意图

    Figure  2.  Optical arrangement of the shadowgraph

    图  3  圆球模型与弹托

    Figure  3.  Sphere and sabots

    图  4  着陆巡视器模型与弹托

    Figure  4.  Entry vehicle model and sabots

    图  5  圆球激波脱体距离测量方法示例

    Figure  5.  Schematic of the measurement method of the shock standoff distance

    图  6  计算网格示意图

    Figure  6.  Schematic of computational grid

    图  7  实验C10-1阴影图像(D=10mm,V=2.122km/s,p=12.300kPa,ρR=1.1×10-3kg/m2)

    Figure  7.  Shadowgraph of the test C10-1

    图  8  实验C10-4阴影图像(Rn=12.5mm,V=2.802km/s,p=1.836kPa,ρRn=4.1×10-4kg/m2)

    图  9  计算密度云图与实验阴影图像对比

    Figure  9.  Comparison between the shadowgraph and the calculated density contour

    图  10  模型头部激波脱体距离实验数据与计算结果的对比

    Figure  10.  Comparison between the tested and the calculated shock standoff distances at the models' nose

    图  11  实验C10-1脱体激波形状和对应的计算结果对比

    Figure  11.  Comparison between the tested and the corresponding calculated shock shape of the test C10-1

    图  12  C10-1状态下模型驻点线上平动、振动温度分布计算结果

    Figure  12.  Calculated translational and vibrational temperature distributions along the stagnation line of the model under the condition of C10-1

    表  1  模型头部激波脱体距离测量数据和对应实验状态

    Table  1.   Shock standoff distances at the spheres' nose under various test conditions

    编号 模型直径
    D/mm
    飞行速度
    V/(km·s-1)
    靶室压力
    p/kPa
    靶室温度
    T/K
    马赫数
    Ma
    雷诺数
    Re*
    双尺度参数
    ρR/(kg·m-2)
    无量纲激波脱体距离
    δ/R
    测量误差
    E/R
    C10-1 10 2.122 12.300 292.1 7.6 3.2×105 1.1×10-3 0.0795 ±3.89%
    C10-2 10 2.845 7.425 293.2 10.2 2.6×105 6.7×10-4 0.0705 ±4.37%
    C10-3 10 4.220 2.420 293.7 15.1 1.2×105 2.2×10-4 0.0618 ±4.88%
    *雷诺数以直径10mm计。
    下载: 导出CSV

    表  2  着陆巡视器头部激波脱体距离测量数据和对应实验状态

    Table  2.   Shock standoff distances at the entry vehicle models' nose under various test conditions

    编号 头部半径
    Rn/mm
    飞行速度
    V/(km·s-1)
    靶室压力
    p/kPa
    靶室温度
    T/K
    马赫数
    Ma
    雷诺数
    Re*
    双尺度参数
    ρRn/(kg·m-2)
    无量纲激波脱体距离
    δ/Rn
    测量误差
    E/Rn
    C10-4 12.5 2.802 1.836 294.7 10.0 1.6×105 4.1×10-4 0.0623 ±8.34%
    *雷诺数以大底直径25mm计。
    下载: 导出CSV

    表  3  模型头部激波脱体距离实验数据与计算结果对比

    Table  3.   Comparison between tested and the calculated shock standoff distances at the models' nose

    编号 激波脱体距离实验值δ/R(δ/Rn) 测量误差E/R 激波脱体距离计算值δ/R(δ/Rn) 计算结果相对实验数据偏差
    C10-1 0.0795 ±3.89% 0.0783 -1.51%
    C10-2 0.0705 ±4.37% 0.0676 -4.11%
    C10-3 0.0618 ±4.88% 0.0596 -3.56%
    C10-4 0.0623 ±8.34% 0.0607 -2.57%
    下载: 导出CSV
  • [1] 韩鸿硕, 陈杰. 21世纪国外深空探测发展计划及进展[J].航天器工程, 2008, 17(3):1-22. http://d.old.wanfangdata.com.cn/Periodical/htqgc200803001

    Han H S, Chen J. 21st century foreign deep space exploration development plans and their progresses[J]. Spacecraft Engineering, 2008, 17(3):1-22. http://d.old.wanfangdata.com.cn/Periodical/htqgc200803001
    [2] 廖东骏, 柳森, 简和祥, 等.高超声速球头激波脱体距离研究综述[J].实验流体力学, 2015, 29(6):1-7. http://www.syltlx.com/CN/abstract/abstract10882.shtml

    Liao D J, Liu S, Jian H X, et al. A review of hypersonic sphere shock standoff distance research[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6):1-7. http://www.syltlx.com/CN/abstract/abstract10882.shtml
    [3] Park C. The limits of two-temperature model[R]. AIAA-2010-911, 2010.
    [4] Nonaka S, Mizuno H, Takayama K, et al. Measurement of shock standoff distance for sphere in ballistic range[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(2):225-229. doi: 10.2514/2.6512
    [5] 柳军, 乐嘉陵, 杨辉.高超声速圆球模型飞行流场的数值模拟和实验验证[J].流体力学实验与测量, 2002, 16(1):67-73. doi: 10.3969/j.issn.1672-9897.2002.01.011

    Liu J, Le J L, Yang H. Numerical simulation of hypersonic flowfield around sphere model and experimental verification[J]. Experiments and Measurements in Fluid Mechanic, 2002, 16(1):67-79. doi: 10.3969/j.issn.1672-9897.2002.01.011
    [6] Zander F, Gollan R J, Jacobs P A, et al. Hypervelocity shock standoff on spheres in air[J]. Shock Wave, 2014, 14:171-178. doi: 10.1007/s00193-013-0488-x
    [7] 史建魁, 张仲谋, 刘振兴, 等.火星环境探测结果分析[J].地球物理学进展, 1997, 12(4):98-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700941240

    Shi J K, Zhang Z M, Liu Z X, et al. An analysis of results of the Martian environment exploration[J]. Progress in Geophysics, 1997, 12(4):98-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700941240
    [8] MacClean M, Holden M. Catalytic effects on heat transfer measurements for aerothermal studies with CO2[R]. AIAA-2006-0182, 2006. http://www.researchgate.net/publication/268564464_catalytic_effects_on_heat_transfer_measurements_for_aerothermal_studies_with_co2
    [9] Doraiswamy S, Kelley D, Candler V G. Vibrational modeling of CO2 in high-enthalpy nozzle Flow[J]. Journal of thermophysics and heat transfer, 2010, 24(1):9-17. doi: 10.2514/1.43280
    [10] MacLean M, Dufrene A, Holden M. Spherical capsule heating in high enthalpy carbon dioxide in LENS-XX expansion tunnel[R]. AIAA-2013-0906, 2013. http://www.researchgate.net/publication/268468442_Spherical_Capsule_Heating_in_High_Enthalpy_Carbon_Dioxide_in_LENS-XX_Expansion_Tunnel
    [11] Sharma S P, Park C. Survey of simulation and diagnostic techniques for hypersonic nonequilibrium flows[J]. Journal of Thermophysics and Heat Transfer, 1990, 4(2):129-142. doi: 10.2514/3.155
    [12] 柳森, 王宗浩, 谢爱民, 等.高超声速锥柱裙模型边界层转捩的弹道靶实验[J].实验流体力学, 2013, 27(6):26-31. doi: 10.3969/j.issn.1672-9897.2013.06.005

    Liu S, Wang Z H, Xie A M, et al. Ballistic range experiments of hypersonic boundary layer transition on a cone-cylinder-flare configuration[J]. Journal of Experiments in Fluid Dynamics, 2013, 27(6):26-31. doi: 10.3969/j.issn.1672-9897.2013.06.005
    [13] Park C. Assessment of two-temperature kinetic model for dissociating and weakly-ionizing nitrogen[J]. Journal of Thermophysics and Heat Transfer, 1988, 2(1):8-16. doi: 10.2514/3.55
    [14] Kay R D, Netterfield M P. Thermochemical non-equilibrium computations for a Mars entry vehicle[R]. AIAA-93-2841, 1993. doi: 10.2514/6.1993-2841
    [15] Suzuki K, Abe T. Thermochemical nonequilibrium viscous shock-layer analysis for a Mars aerocapture vehicle[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(4):773-780. doi: 10.2514/3.611
    [16] Furudate M, Suzuki T, Takayanagi H, et al. Three-dimensional aerodynamics study for Mars aeroshellin nonequilibrium flow[R]. AIAA-2010-4647, 2010. doi: 10.2514/6.2010-4647
    [17] 柳森, 黄洁, 李毅, 等.中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展[J].载人航天, 2011, 17(6):17-23. doi: 10.3969/j.issn.1674-5825.2011.06.004

    Liu S, Huang J, Li Y, et al. Recent advancement of hypervelocity impact tests at HAI[J]. Journal of Manned Spacecraft, 2011, 17(6):17-23. doi: 10.3969/j.issn.1674-5825.2011.06.004
    [18] Park C, Howe J, Jaffe R, et al. Review of chemical-kinetic problems of future NASA missions, Ⅱ:Mars entries[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):9-23. doi: 10.2514/3.496
    [19] 董维中.气体模型对高超声速再入钝体气动参数计算影响的研究[J].空气动力学学报, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010

    Dong W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2): 197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  92
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-07
  • 修回日期:  2018-04-26
  • 刊出日期:  2018-06-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日