Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-28T06:19:24.428Z Has data issue: false hasContentIssue false

The epidemiology of varicella–zoster virus infections: a mathematical model

Published online by Cambridge University Press:  15 May 2009

G. P. Garnett
Affiliation:
Department of Animal and Plant Sciences, Sheffield University
B. T. Grenfell
Affiliation:
Department of Zoology, Cambridge University, Cambridge CB2 3EJ
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Herpes-zoster is caused by the reactivation of varicella–zoster virus (VZV). In this paper different hypotheses of how this re-emergence of virus comes about are reviewed and discussed. From these hypotheses, and epidemiological data describing the initial transmission of the virus, a mathematical model of primary disease (varicella) and reactivated disease (zoster) in developed countries is derived. The steady-state age distributions of zoster cases predicted by this model are compared with the observed distribution, derived from a review and analysis of published epidemiological data. The model allows differentiation between published hypotheses in which age of host may or may not influence the probability of viral reactivation. The results indicate that the probability of reactivation must increase with age to allow the observed pattern of zoster cases. The basic mathematical model presented provides a conceptual framework, which may be extended to assess possible control programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

REFERENCES

1.Weller, TH. Varicella–herpes zoster virus. In: Evans, AS, ed. Viral infections of humans, epidemiology and control. New York: Plenum Medical Book Company, 1989; 659–83.CrossRefGoogle Scholar
2.Christie, AB. Infectious diseases. Volume 1. Edinburgh: Churchill Livingstone, 1987; 376–87.Google Scholar
3.London, WP, Yorke, JA. Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. Am J Epidemiol 1973; 98: 453–68.CrossRefGoogle ScholarPubMed
4.Olsen, LF, Schaffer, WM. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science 1990; 249: 499504.CrossRefGoogle ScholarPubMed
5.Hope-Simpson, RE. Infectiousness of communicable diseases in the household. Lancet 1952; ii: 549–54.CrossRefGoogle Scholar
6.Hope-Simpson, RE. Studies on shingles – is the virus ordinary chickenpox virus? Lancet 1954; ii: 1299.Google Scholar
7.Hope-Simpson, RE. The nature of herpes-zoster: a long-term study and a new hypothesis. Proc Roy Soc Med 1965; 58: 920.CrossRefGoogle Scholar
8.Takahashi, M. Chickenpox virus. Adv Virus Res 1983; 28: 285348.CrossRefGoogle ScholarPubMed
9.Plotkin, SA. Live varicella vaccine: the third act? Vaccine 1986; 4: 74.CrossRefGoogle ScholarPubMed
10.Just, M, Berger, R, Luescher, D. Live varicella vaccine in healthy individuals. Postgrad Med J 1985; 61 (suppl 4): 129–32.Google ScholarPubMed
11.Plotkin, SA. Varicella vaccine: a point of descision. Pediatrics 1986; 78: 705–7.CrossRefGoogle Scholar
12.McLean, G. Compulsory vaccination. Aust Fam Phys 1988; 17: 12.Google ScholarPubMed
13.Plotkin, SA. Clinical and pathogenic aspects of varicella–zoster. Postgrad Med J 1985; 61 (suppl 4): 714.Google ScholarPubMed
14.Straus, SE, Ostrove, JM, Inchauspe, G et al. , Varicella–zoster virus infections. Biology, natural history, treatment and prevention. Ann of Int Med 1988; 108: 2137.CrossRefGoogle ScholarPubMed
15.Weller, TH. Varicella and herpes-zoster: changing concepts of the natural history, control and importance of a not-so-benign virus. N Engl J Med 1983; 309: 1362–440.CrossRefGoogle ScholarPubMed
16.Head, H, Campbell, AW. The pathology of herpes-zoster and its bearing on sensory localisation. Brain 1900; 23: 353.CrossRefGoogle Scholar
17.Hyman, RW, Ecker, JR, Tenser, RB. Varicella–zoster virus RNA in human trigeminal ganglia. Lancet 1983; ii: 814–16.CrossRefGoogle Scholar
18.Gilden, DH, Vafai, A, Shtram, Y, Becker, Y, Berli, M, Wellish, M. Varicella–zoster virus DNA in human sensory ganglia. Nature 1983; 306: 478–80.CrossRefGoogle ScholarPubMed
19.Anderson, RM, May, RM. Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. J Hyg 1985; 94: 365436.CrossRefGoogle ScholarPubMed
20.Anderson, RM, May, RM. Vaccination and herd immunity to infectious disease. Nature 1985; 319: 323–9.CrossRefGoogle Scholar
21.Takahashi, M, Kamiya, H, Baba, K, Asano, Y, Ozaki, T, Horiuchi, K. Clinical experience with Oka live varicella vaccine in Japan. Postgrad Med J 1985; 61 (suppl. 4): 61–7.Google ScholarPubMed
22.Garnett, GP, Grenfell, BT. The epidemiology of varicella–zoster virus: the influence of varicella on the prevalence of herpes-zoster. Epidemiol Infect 1992; 108: 513528.CrossRefGoogle ScholarPubMed
23.Stokes, J Jr. Varicella–herpes zoster group. In: Rivers, TM, Horsfall, FL Jr. eds. Viral and rickettsial infections of man. Philadelphia: J. B. Lippincott. 1959: 773–9.Google Scholar
24.Juel-Jenson, BE. The natural history of shingles. J Roy Col Gen Pract 1970; 20: 323–7.Google Scholar
25.Juel-Jensen, BE. Herpes-simplex and zoster. Br Med J 1973: 406–10.CrossRefGoogle ScholarPubMed
26.Myers, MG. Varicella and herpes-zoster: comparison in the old and young. Geriatrics 1977; 32: 77–9.Google ScholarPubMed
27.Mazur, MH, Dolin, R. Herpes-zoster at the NIH: a 20-year experience. Am J Med 1978; 65: 738–44.CrossRefGoogle ScholarPubMed
28.Millar, AE. Selective decline in cellular immune response to varicella–zoster in the elderly. Neurology 1980; 30: 582–7.CrossRefGoogle Scholar
29.Berger, R, Florent, G, Just, M. Decrease of the lymphoproliferative response to varicella–zoster virus antigen in the aged. Infect Immun 1981; 32: 24–7.CrossRefGoogle ScholarPubMed
30.Burke, BL, Steele, RW, Beard, OW, Wood, JS, Cain, TD, Mamer, DJ. Immune responses to varicella–zoster in the aged. Arch Intern Med 1982; 142: 291–3.CrossRefGoogle ScholarPubMed
31.Rook, G. Immunity to viruses, bacteria and fungi. In: Roitt, IM, Brostoff, J, Male, DK, eds. Immunology. Edinburgh: Churchill Livingstone. 1989; 16: 116.Google Scholar
32.Seiler, HE. A study of herpes-zoster particularly in relationship to chickenpox. J Hyg 1949; 17: 253–62.CrossRefGoogle Scholar
33.Gordon, JE. Chickenpox: an epidemiological review. Am J Med Sci 1962; 244: 362–85.CrossRefGoogle ScholarPubMed
34.Burgoon, CF, Burgoon, JS, Baldridge, GD. The natural history of herpes-zoster. JAMA 1957; 164: 265–9.CrossRefGoogle ScholarPubMed
35.Ragozzino, MW, Melton, LJ, Kurland, LT, Chu, CP, Perry, HO. Population based study of herpes-zoster and its sequelae. Medicine 1982; 61: 310–16.CrossRefGoogle ScholarPubMed
36.Fox, JP, Elveback, L, Scott, W, Gatewood, L, Ackerman, E. Herd immunity: basic concept and relevance to public health immunisation practices. Am J Epidemiol 1971; 94: 179–89.CrossRefGoogle Scholar
37.Anderson, RM, May, RM. Vaccination against rubella and measles: quantitative investigations of different policies. J Hyg 1983; 90: 259–25.CrossRefGoogle ScholarPubMed
38.Anderson, RM, May, RM. Population biology of infectious diseases. Part 1. Nature 1979; 280: 361–7.CrossRefGoogle Scholar
39.Gershon, AA, Raker, R, Steinberg, S, Topf-Olstein, B, Drusin, LM. Antibody to varicella–zoster virus in parturient women and their offspring during the first year of life. Pediatrics 1976; 58: 692–6.CrossRefGoogle ScholarPubMed
40.Ozaki, T, Nagai, H, Kimura, T, Ichikawa, T, Suzuki, S. The age distribution of neutralising antibodies against varicella–zoster virus in healthy individuals. Biken J 1980; 23: 914.Google ScholarPubMed
41.Trlifayova, J, Porkorny, J, Svandova, E, Ryba, M. Study of persistence of maternal antibodies to varicella–zoster virus by indirect haemagglutination, with result control by radioimmunoassay. J Hyg Epidemiol Microbiol Immunobiol 1982; 28: 6573.Google Scholar
42.Gordon, JE, Meader, FM. The period of infectivity and serum prevention of chickenpox. JAMA 1929; 93: 2013–15.Google Scholar
43.Ross, HA, Lencher, E, Reitman, G. Modification of chickenpox in family contacts by administration of gamma globulin. New Engl J Med 1962; 267: 369–76.CrossRefGoogle ScholarPubMed
44.Troller, J. Herpes-zoster in general practice. Aust Fam Phys 1987; 16: 1133–40.Google Scholar
45.Grenfell, BT, Anderson, RM. The estimation of age-related rates of infection from case notifications and serological data. J Hyg 1985; 95: 419–36.CrossRefGoogle ScholarPubMed
46.Schneweis, KE, Krentler, Ch, Wolff, MH. Durchseuschung mit dem Varicella–zoster Virus und serologische Feststellung der erstinfections Immunität. Dtsch Med Wschr 1985; 110: 453–7.CrossRefGoogle Scholar
47.Muench, R, Nassim, C, Nika, S, Sullivan-Boylai, JZ. Seroepidemiology of varicella. J Infect Dis 1986; 153: 153–5.CrossRefGoogle ScholarPubMed
48.Leventon-Kriss, S, Yoffe, R, Rannon, L, Modan, M. Seroepidemiological aspects of varicella–zoster virus infections in an Israeli Jewish population. Israeli J Med Sci 1978; 14: 766–70.Google Scholar
49.Eguilez, GC, Trallero, EP, Arenzana, JMG. Seroepidemiology of varicella in children from Spain. J Infect Dis 1987; 156: 851.CrossRefGoogle Scholar
50.Gershon, AA, Steinberg, SP. Antibody responses to varicella–zoster virus and the role of antibody in host defence. Am J Med Sci 1981; 282: 1217.CrossRefGoogle Scholar
51.Collins, SD, Wheeler, RE, Shannon, RD. The occurrence of whooping cough, chickenpox, mumps and German measles in 200,000 surveyed families in 28 large cities. United States – 1943. Washington: N.I.H. Division of Public Health Methods. Special study series No. 1.Google Scholar
52.Sullivan-Boylai, JZ, Yin, EK, Cox, P et al. , Impact of chickenpox on households of healthy children. Pediatr Infect Dis 1987; 6: 33–5.CrossRefGoogle Scholar
53.Saito, M, Haruyama, C, Ohba, H, Wada, A, Takeuchi, Y. A seroepidemiological study on varicella. Kanseshogaka Zasshi 1987; 61: 783–8.CrossRefGoogle ScholarPubMed
54.Hellgren, L, Hersle, K. A statistical and clinical study of herpes-zoster. Geront Clin 1966; 8: 70–6.CrossRefGoogle ScholarPubMed
55.Wilson, JB. Thirty-one years of herpes-zoster in a rural practice. Br Med J 1986; 293: 1349–51.CrossRefGoogle Scholar
56.Millar, LH, Brunell, PA. Zoster, reinfection or activation of latent virus? Am J Med 1970; 49: 480–3.CrossRefGoogle Scholar
57.McGregor, RM. Herpes-zoster, chickenpox and cancer in general practice. Br Med J 1957; i: 84–7.CrossRefGoogle Scholar
58.Schenzle, D. An age-structured model of pre- and post-vaccination measles transmission. IMAJ Math Appl Med Biol 1984; 1: 169–91.CrossRefGoogle ScholarPubMed
59.Anderson, RM, Grenfell, BT, May, RM. Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: time series analysis. J Hyg 1984; 93: 587608.CrossRefGoogle ScholarPubMed
60.Jako, GJ, Jako, RA. Short historical note: connection between varicella and herpes-zoster. J Med 1986; 17: 267–70.Google Scholar
61.Pallett, AP, Nicholls, MWN. Varicella–zoster: reactivation and reinfection? Lancet 1986; i: 160.CrossRefGoogle Scholar
62.Schools Epidemics Committee. The relationship between chickenpox and herpes-zoster. Medical Research Council. Special Reports Series. Epidemics in Schools 1938; No 227: 181–4.Google Scholar