DOI QR코드

DOI QR Code

Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5

Pseudomonas aeruginosa P-5에 존재하는 polyhydroxyalkanoate synthase PhaC1과 PhaC2의 기질특이성

  • Woo, Sang Hee (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Lee, Sun Hee (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Rhee, Young Ha (Department of Microbiology and Molecular Biology, Chungnam National University)
  • 우상희 (충남대학교 미생물.분자생명과학과) ;
  • 이선희 (충남대학교 미생물.분자생명과학과) ;
  • 이영하 (충남대학교 미생물.분자생명과학과)
  • Received : 2016.09.13
  • Accepted : 2016.09.23
  • Published : 2016.12.31

Abstract

Pseudomonas aeruginosa P-5 is an unusual organism capable of synthesizing polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyvalerate (3HV) and medium-chain-length (MCL) 3-hydroxyalkanoate (3HA) monomer units when C-odd alkanoic acids are fed as the sole carbon source. Evaluation of the substrate chain-length specificity of two P. aeruginosa P-5 PHA synthases ($PhaC1_{P-5}$ and $PhaC2_{P-5}$) by heterologous expression of $PhaC1_{P-5}$ and $PhaC2_{P-5}$ genes in Pseudomonas putida GPp104 revealed that $PhaC2_{P-5}$ incorporates both 3HV and MCL 3HAs into PHA, whereas $PhaC1_{P-5}$ favors only MCL 3HAs for polymerization. In order to obtain $PhaC2_{P-5}$ mutants with altered substrate specificity, site-specific mutagenesis for $PhaC2_{P-5}$ was conducted. Amino acid substitutions of $PhaC2_{P-5}$ at two positions (Ser326Thr and Gln482Lys) were very effective for synthesizing copolymers with a higher 3HV fraction. When recombinant P. putida GPp104 harboring double mutated $phaC2_{P-5}$ gene ($phaC2_{P-5}QKST$) was grown on nonanoic acid, 2.5-fold increase of copolymer content with 3.8-fold increase of 3HV fraction was observed. The $phaC2_{P-5}QKST$-containing Ralstonia eutropha PHB-4 supplemented with valeric acid also produced copolymers consisting of 3HV and 3-hydroxyheptanoate with a high 3HV fraction. These results suggest that recombinants containing $phaC2_{P-5}QKST$ could be useful for production of new PHA copolymers with improved material properties.

Pseudomonas aeruginosa P-5 균주는 홀수개의 탄소수를 갖는 지방산으로부터 3-hydroxyvalerate (3HV)와 medium-chain-length (MCL) 3-hydroxyalkanoates (3HAs) 단위체로 구성된 popolyhydroxyalkanoate (PHA) 공중합체를 생산하는 특이한 성질을 갖고 있다. 이 균주가 갖고 있는 2개의 MCL-PHA synthases ($PhaC1_{P-5}$$PhaC2_{P-5}$)의 탄소길이에 따른 기질특이성을 비교하기 위하여 각각의 유전자를 PHA 생합성능이 결여된 돌연변이주 Pseudomonas putida GPp104에 도입하고 발현시킨 결과, $PhaC2_{P-5}$는 3HV와 MCL 3HAs로 이루어진 공중합체를 생산하지만 $PhaC1_{P-5}$는 단지 MCL 3HAs로 구성된 공중합체를 생산하였다. 이는 $PhaC2_{P-5}$$PhaC1_{P-5}$과는 달리 보다 짧은 탄소길이의 3-hydroxyvaleryl Co-A를 기질로 인지하여 합성반응에 이용할 수 있음을 보여주는 것이다. 또한 $PhaC2_{P-5}$의 효소활성 및 기질특이성의 변화를 유도하기 위하여 위치지정 돌연변이생성을 수행하고 P. putida GPp104과 다른 PHA 생합성능 결여 돌연변이주인 Ralstonia eutropha $PHB^-4$에서 발현시킨 결과, $PhaC2_{P-5}$ 내 두 개 아미노산의 치환(Ser326Thr과 Gln482Lys)이 공중합체의 3HV 함량을 크게 증진시키는 효과를 보였다. 두 개 아미노산이 모두 치환된 $PhaC2_{P-5}$ 유전자($phaC2_{P-5}QKST$)를 갖는 P. putida GPp104를 nonanoic acid가 탄소원으로 함유된 배지에서 배양하였을 때, 모균주에 비해 공중합체 함량과 공중합체 내 3HV 함량이 각각 2.5배 및 3.5배 증가하였다. 따라서 $phaC2_{P-5}QKST$를 포함하는 재조합 균주는 개량된 물성의 신규PHAs 생산에 유용할 것으로 기대된다.

Keywords

References

  1. Abe, H. and Doi, Y. 2002. Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules 3, 133-138. https://doi.org/10.1021/bm0155975
  2. Abe, H., Doi, Y., Fukushima, T., and Eya, H. 1994. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61-3. Int. J. Biol. Macromol. 16, 115-119. https://doi.org/10.1016/0141-8130(94)90036-1
  3. Akaraonye, E., Keshavarz, T., and Roy, I. 2010. Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732-743. https://doi.org/10.1002/jctb.2392
  4. Chen, G.Q. 2011. Biofunctionalization of polymers and their applications. Adv. Biochem. Eng. Biotechnol. 125, 29-45.
  5. Chen, J.Y., Liu, T., Zheng, Z., Chen, J.C., and Chen, G.Q. 2004. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol. Lett. 234, 231-237. https://doi.org/10.1111/j.1574-6968.2004.tb09538.x
  6. Chen, J.Y., Song, G., and Chen, G.Q. 2006. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and mediumchainlength 3-hydroxyalkanoates. Antonie van Leeuwenhoek 89, 157-167. https://doi.org/10.1007/s10482-005-9019-9
  7. Chen, G., Zhang, G., Park, S., and Lee, S. 2001. Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57, 50-55. https://doi.org/10.1007/s002530100755
  8. Chung, M.G. and Rhee, Y.H. 2012. Overexpression of the (R)-specific enoyl-CoA hydratase gene from Pseudomonas chlororaphis HS21 in Pseudomonas strains for the biosynthesis of polyhydroxyalkanoates of altered monomer composition. Biosci. Biotechnol. Biochem. 76, 613-616. https://doi.org/10.1271/bbb.110871
  9. Hazer, B. and Steinbuchel, A. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74, 1-12. https://doi.org/10.1007/s00253-006-0732-8
  10. Hein, S., Paletta, J., and Steinbuchel, A. 2002. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl. Microbiol. Biotechnol. 58, 229-236. https://doi.org/10.1007/s00253-001-0863-x
  11. Huisman, G.W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., and Witholt, B. 1991. Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J. Biol. Chem. 266, 2191-2198.
  12. Iwasaki, K., Uchiyama, H., Yagi, O., Kurabayashi, T., Ishizuka, K., and Takamura, Y. 1994. Transformation of Pseudomonas putida by electroporation. Biosci. Biotechnol. Biochem. 58, 851-854. https://doi.org/10.1271/bbb.58.851
  13. Kang, H.O., Chung, C.W., Kim, H.W., Kim, Y.B., and Rhee, Y.H. 2001. Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191. https://doi.org/10.1023/A:1012214029825
  14. Keshavarz, T. and Roy, I. 2010. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr. Opin. Microbiol. 13, 321-326. https://doi.org/10.1016/j.mib.2010.02.006
  15. Kim, D.Y., Kim, H.W., Chung, M.G., and Rhee, Y.H. 2007. Biosynthesis, modification, and biodegradation of bacterial medium-chainlength polyhydroxyalkanoates. J. Microbiol. 45, 87-97.
  16. Kim, D.Y., Kim, Y.B., and Rhee, Y.H. 2000. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29. https://doi.org/10.1016/S0141-8130(00)00150-1
  17. Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., and Peterson, K.M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  18. Lee, E.Y., Jendrossek, D., Schirmer, A., Choi, C.Y., and Steinbuchel, A. 1995. Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1, 3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33. Appl. Microbiol. Biotechnol. 42, 901-909. https://doi.org/10.1007/BF00191189
  19. Lee, S.H., Kim, J.H., Mishra, D., Ni, Y.Y., and Rhee, Y.H. 2011. Production of medium-chain-length polyhydroxyalkanoates by activated sludge enriched under periodic feeding with nonanoic acid. Bioresour. Technol. 102, 6159-6166. https://doi.org/10.1016/j.biortech.2011.03.025
  20. Leong, Y.K., Show, P.L., Ooi, C.W., Ling, T.C., and Lan, J.C.W. 2014. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J. Biotechnol. 180, 52-65. https://doi.org/10.1016/j.jbiotec.2014.03.020
  21. Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., and Doi, Y. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180, 6459-6467.
  22. Nomura, C.T., Taguchi, K., Taguchi, S., and Doi, Y. 2004. Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl. Environ. Microbiol. 70, 999-1007. https://doi.org/10.1128/AEM.70.2.999-1007.2004
  23. Qi, Q.S., Rehm, B.H.A., and Steinbuchel, A. 1997. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157, 155-162. https://doi.org/10.1111/j.1574-6968.1997.tb12767.x
  24. Schubert, P., Steinbuchel, A., and Schlegel, H.G. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-${\beta}$-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170, 5837-5847. https://doi.org/10.1128/jb.170.12.5837-5847.1988
  25. Shen, X.W., Shi, Z.Y., Song, G., Li, Z.J., and Chen, G.Q. 2011. Engineering of polyhydroxyalkanoate (PHA) synthase $PhaC2_{Ps}$ of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Appl. Microbiol. Biotechnol. 91, 655-665. https://doi.org/10.1007/s00253-011-3274-7
  26. Steinbuchel, A. and Lutke-Eversloh, T. 2003. Metabolic engineering and pathway construction for biotechnological production of relavant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81-96. https://doi.org/10.1016/S1369-703X(03)00036-6
  27. Takase, K., Matsumoto, K.I., Taguchi, S., and Doi, Y. 2004. Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5, 480-485. https://doi.org/10.1021/bm034323+
  28. Takase, K., Taguchi, S., and Doi, Y. 2003. Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J. Biochem. 133, 139-145. https://doi.org/10.1093/jb/mvg015
  29. Woo, S.H., Kim, J.H., Ni, Y.Y., and Rhee, Y.H. 2012. Biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by the Pseudomonas aeruginosa P-5 strain. Korean J. Microbiol. 48, 200-206. https://doi.org/10.7845/kjm.2012.031