Impact of a Constant Magnetic Field on Decomposition of Cu-Be-Ni-Based Solid Solution

Article Preview

Abstract:

Impact of a constant magnetic field on decomposition of supersaturated solid solution is investigated for the system Cu-Be-Ni. A technical bronze Cu-1.9Be-0.3Ni (in wt.%) was water-quenched after holding at 800°C (0.5 h) and subsequently heat treated at 325°C, 350°C and 400°C for 1 hour without and with application of a constant magnetic field of 0.7 T. The annealing in magnetic field is found to influence significantly the precipitation characteristics in diamagnetic Cu-based alloy, especially at 325°C. The nucleation barriers for discontinuous precipitation at grain boundaries are decreased, while the growth rates seem to be decreased, too, in magnetic field. A possible mechanism of the magnetic effect on discontinuous precipitation in the Cu-based is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-179

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] Sumi, Toda, Fuijii, Tsurikawa, Rev. Adv. Mater. Sci. 21(2009) 35-43.

Google Scholar

[2] Wu Y, Lu Y, Zhao X, Zuo L, Effects of magnetic field intensity on carbon diffusion in pure iron in the single-phase austenite region, Mater Science Forum 706-709 (2011) 2372-2377.

DOI: 10.4028/www.scientific.net/msf.706-709.2372

Google Scholar

[3] Pokoev AV, Stepanov DI, Trofimov IS, Mazanko VF, The Constant Magnetic Field Influence on Diffusion of 63Ni in a-Fe, phys. stat. sol. (a) 137 (1993) K1-K3.

DOI: 10.1002/pssa.2211370126

Google Scholar

[4] Pokoev AV, Stepanov DI, Anisotropy of 63Ni diffusion in single-crystal silicon iron in a static magnetic field, Tech. Phys. Lett. 23 (1997) 184-185.

DOI: 10.1134/1.1261641

Google Scholar

[5] Molodov DA, Gunster, C, Gottstein G, Grain boundary motion and grain growth in zinc in a high magnetic field, J Mater Sci 49 (2014) 3875-3884.

DOI: 10.1007/s10853-013-7699-5

Google Scholar

[6] Molodov DA, Konijnenberg PJ, Barrales-Mora LA, Mohles V, Magnetically controlled microstructure evolution in non-ferromagnetic metals, J Mater Sci 41 (2006) 7853–7861.

DOI: 10.1007/s10853-006-0422-z

Google Scholar

[7] Molodov DA, Bhaumik S, Molodova X, Gottstein G, Annealing behaviour of cold rolled aluminum alloy in a high magnetic field, Scripta Materialia 54 (2006) 2161–2164.

DOI: 10.1016/j.scriptamat.2006.02.033

Google Scholar

[8] Molodov DA, Bozzolo N, Observations on the effect of a magnetic field on the annealing texture and microstructure evolution in zirconium, Acta Materialia 58 (2010) 3568–3581.

DOI: 10.1016/j.actamat.2010.02.027

Google Scholar

[9] Dong J, Li ZF, Zeng XQ, Lu C, Ding WJ, Effect of strong magnetic field on the discontinuous and continuous precipitation in AZ91 Mg alloy, Mater Sci Forum 488-489 (2005) 849-852.

DOI: 10.4028/www.scientific.net/msf.488-489.849

Google Scholar

[10] Li D, Wang Q, Wang K, Wu C, Li G, He J, Diffusion behaviour and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields, Mater Science Forum 706-709 (2011) 2910-2915.

DOI: 10.4028/www.scientific.net/msf.706-709.2910

Google Scholar

[11] Osinskaya Yu. V., Pokoev A.V. Fizika i Khimiya Obrabotki Materialov (2003) №3, 18-23 (in Russian).

Google Scholar

[12] Osinskaya J.V., Petrov S.S., Pokoev A. V. Influence of the Constant Magnetic Field on Kinetics of Beryllium Bronze Aging. Defect and Diffusion Forum 216-217 (2003) 157-160.

DOI: 10.4028/www.scientific.net/ddf.216-217.157

Google Scholar

[13] Krivoglaz МА, Theory of X-ray and thermal neutron scattering by real crystals, Moscow, Nauka (1967).

Google Scholar

[14] Massalski TB, Binary Alloy Phase Diagrams, ASM International, Materials Park (2001).

Google Scholar

[15] Golovin Yu.I., Phys Solid State 46 (2004) 769.

Google Scholar

[16] Morgunov RB, Uspekhi Phys Nauk 47 (2004) 125.

Google Scholar

[17] Alshits VI, Darinskaya EV, Gektina IV, Lavrentyev FF. Crystallogr Rep 35 (1990) 1014.

Google Scholar

[18] Alshits VI, Darinskaya EV, Petrzhik EA. Phys Solid State 34 (1992) 155.

Google Scholar

[19] Baburaj EG, Kulkarni UD, Menon ESK, Krishnan R. CuBe precipitation in Cu-Be alloys, Phase Transitions 1 (1979) 171-197.

DOI: 10.1080/01411597908213199

Google Scholar

[20] S. F. Baumann, J. Michael and D. B. Williams, Initiation and growth of the grain boundary discontinuous precipitation reaction, Acta Mater 29 (1981) 1343-1355.

DOI: 10.1016/0001-6160(81)90025-0

Google Scholar

[21] E. Rabkin, A. Gabelev, T. Matsuzaki, T. Watanabe, The Effect of Magnetic Field on Kinetics of Grain Boundary Grooving in Iron, Defect Diff. Forum 237-240 (2005) 560-565.

DOI: 10.4028/www.scientific.net/ddf.237-240.560

Google Scholar

[22] P. Zieba, W. Gust, Analytical electron microscopy of discontinuous solid state reactions, Int. Mater. Rev. 43 (1998) 70-97.

Google Scholar

[23] S.V. Divinski, J. Ribbe, G. Schmitz, Chr. Herzig, Grain boundary diffusion and segregation of Ni in Cu, Acta Mater. 55 (2007) 3337-3346.

DOI: 10.1016/j.actamat.2007.01.032

Google Scholar