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5.1  Background
5.1.1  GLOBAL DISTRIBUTION OF FOREST 
BIOMASS

Vegetation in terrestrial ecosystems takes up a 
significant fraction (~30%, or 3 PgC year–1) of carbon 
released to the atmosphere from fossil fuel and de-
forestation (LeQuere et al. 2018, Schimel et al. 2015) 
and creates the land residual sink with a destiny 
dependent on future climate conditions and human 
activities (Ciais et al. 2013, Bonan 2008). Almost all 
of this sink is in forests, covering about 3.8 billion ha 
(FAO 2015) of the land surface (~30%) and storing 
large reservoirs of carbon, approximately double 
the amount in the atmosphere (Canadell & Raupach 
2008, Sabine et al. 2004). Together, the carbon stored 
and sequestered in these ecosystems are major con-
tributors to mitigating climate change and the eco-
nomic benefits of emission Reductions from Defor-
estation and Degradation (REDD) (IPCC 2007, Gibbs 
et al. 2014). There are, however, large uncertainties 
surrounding the magnitude of the carbon stored in 
forests, particularly at landscape scales (1–100 ha) 
where mitigation benefits and ecosystem services 
are evaluated (Gibbs et al. 2007). A recent attempt to 

put together the information from different types of 
measurements on a global scale captures the overall 
distribution of forest Above Ground Biomass (AGB) 
and carbon stored in global ecosystems (Fig. 5.1).

The structure of forests (i.e., the three-dimension-
al arrangement of individual trees) is a direct indica-
tor of how much carbon is stored in the ecosystem. 
Carbon stored in an ecosystem has a profound effect 
on how the ecosystem functions (i.e., how it cycles 

carbon, water, and nutrients). Additionally, there is 
an increased need to understand local to global stor-
age and dynamics of carbon in ecosystems, as carbon 
storage is a prerequisite to understanding the cou-
pling of the biosphere to other components of Earth 
systems. For example, the amount of carbon in a sys-
tem determines how much is eventually emitted to 
the atmosphere (as CO2, CO, and CH4 through burning 
and decay) when ecosystems are disturbed due to 
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CHAPTER 5
SAR Methods for Mapping and Monitoring Forest Biomass 

Forests play a major role in the global carbon cycle, sequestrating more than 25% of the carbon emitted to the atmosphere from fossil fuel consumption and land-
use changes. The accumulation of carbon in forests has therefore become an effective strategy for mitigating climate change and an important mechanism for 
countries to meet their emission requirements under many international protocols and agreements. Remote sensing techniques are considered the most promis-
ing approach for providing up-to-date information on the status of forest cover and carbon stocks at different scales. Among remote sensing techniques, Synthetic 
Aperture Radar (SAR) sensors at long wavelengths have the advantage of strong sensitivity to the forest Above Ground Biomass (AGB) and the ability to quantify 
and monitor carbon stocks at the scale in which human activities occur. This chapter provides a summary of the methodologies and techniques for estimating 
forest AGB and monitoring changes from existing and future SAR satellite systems. The material in this chapter is designed to help both practitioners and remote 
sensing students and experts use SAR imagery for mapping and monitoring forest biomass. The examples and the bibliography capture the state of the art in SAR 
remote sensing of vegetation structure and biomass, and provide resources for enthusiasts to follow future developments in the technology and the methodology.

ABSTRACT

Figure 5.1 Distribution of forest AGB density in global ecosystems showing the high biomass in tropical 
rainforest regions and relatively lower biomass in extratropics extending to temperate and boreal 
regions with vast areas of forest cover. Map is produced at 1-km spatial resolution using a combination 
of ground, lidar, and radar measurements by Saatchi’s team at the Jet Propulsion Laboratory, California 
Institute of Technology.
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deforestation and degradation or from climate-driv-
en stress and fire. The amount of carbon stored in the 
system can be estimated from AGB, which is estimat-
ed from measurements of structure (e.g., the size and 
density of trees) and the mass of trees. As such, AGB 
is considered a crucial variable for a range of applica-
tions, including forest fire assessment, management 
of the timber industry, monitoring land-use change, 
and other ecosystem services such as biodiversity 
and production of food and fiber, as well as green-
house gas accounting. 

Although many of these applications may be 
accounted for by using operational satellite obser-
vations of forest cover change, the understanding 
of changes in terrestrial AGB remains rudimentary 
(Saatchi et al. 2011). For example, it is known that 
changes in land use, largely from tropical deforesta-
tion and fire, are estimated to have reduced biomass 
globally, while the global carbon balance suggests 
that terrestrial carbon storage has increased; albe-
it the exact magnitude, location, and causes of this 
residual terrestrial sink are still not well quantified 
(Schimel et al. 2015a, Sellers et al. 2018). There is 
strong evidence that the residual sinks are spread in 
different forest ecosystems with locations that may 
change due to climate change and anomalies. Yet 
the magnitude and fate of these terrestrial sinks are 
crucial to future climate projections, and any uncer-
tainties in the spatial locations or the temporal be-
havior of them directly influences the current status 
of global carbon cycle and climate (Houghton et al. 
2018, Schimel et al. 2015a).

5.1.2  GROUND INVENTORY OF FOREST 
BIOMASS

Knowledge of the distribution and amount of 
AGB is based almost entirely on ground inventory 
measurements over an extremely small (and possibly 
biased) set of samples, with many regions left un-
measured (Fig. 5.2). Conventional forest inventory 
data known as the National Forest Inventory (NFI) 
are based on systematic sampling of forests and are 
mainly designed for monodominant, evenly aged 
forests in managed temperate and boreal regions. 
Although the basic statistical techniques can be used 
for tropical forests, there are differences in terms of 

plot size, number of plots, and plot locations that 
have not been worked out for tropical forests.

• Conventional NFI can provide accurate estimates 
of forest carbon density at the national and po-
tentially subnational levels depending on the 
density of the plots. However, they cannot pro-
vide spatial maps unless combined with remote 
sensing data.

• In tropical and unmanaged forests, implementa-
tion of NFI is extremely difficult, because of limit-
ed access to the site and the cost of establishing 
and monitoring plots over time. Using the proto-
cols of the U.S. or northern Scandinavian NFI to 
the tropics requires a large number of plots.

• Conventional NFI data include 5–10 years of 
repeated measurements, and the timing of the 
measurements is not coordinated among the 
countries, making it difficult to conduct a global 
assessment for any period. For Greenhouse Gas 
(GHG) emissions, the use of a national inventory 
along with remote sensing estimation of forest 
cover change can provide national-level emis-
sions estimates, but those estimates may involve 
uncertainty due to the lack of forest estimates in 
areas where deforestation occurs.

At large scales, robust AGB estimates are acquired 

from ground-based forest censuses that are based 
on labor-intensive fieldwork (plot inventories) con-
ducted by trained operators. As such, these plot in-
ventories cannot be repeated frequently or at a low 
cost everywhere. Thus, plot inventories are limited to 
managed forests in a number of developed countries 
in the Northern Hemisphere where systematic sam-
pling of forest inventories are performed on a regu-
lar basis (5- to 10-year cycles). Information on most 
carbon-rich global forests is missing, particularly in 
developing and tropical countries, even though this is 
where most living biomass is located (63% of carbon 
in intact tropical forests versus 15% in boreal forests 
and 13% in temperate forests, according to a recent 
and comprehensive estimate (FAO 2015)). Further-
more, land-use activities, along with increasing dis-
turbances from climate and human stresses, are rap-
idly changing plot inventory requirements to include 
more frequent observations of forest ecosystems.

5.1.3  REMOTE SENSING OF FOREST BIOMASS

There is a strong synergism between ground and 
remote sensing measurements for quantifying AGB 
(Fig. 5.3). Ground data (generally consisting of 
all tree diameters above a threshold, a sampling of 
tree heights, and species identification that permits 

Figure 5.2 The distribution of woody (forest and shrubland) area and biomass derived from a 
variety of sources from field and remote sensing data. The red histogram shows forest inventory 
plot density in 1,000 km2 grid cells (Schimel et al. 2015b), suggesting an uneven distribution 
of inventory plots in the Northern Hemisphere and a lack of data in tropical regions.
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inference of wood densities) are more comprehen-
sive locally than remote sensing data that generally 
measure aggregate canopy height (in the case of li-
dar sensors) or some indicators of forest height and 
volume (in the case of radar sensors). In contrast, 
airborne or satellite remote sensing-based data are 
far more extensive, with millions of measurements 
over regional or continental scales compared to 
plots and providing a more spatially comprehensive 
measure of forest biomass variations. However, both 
ground inventory and remote sensing observations 
focus on measuring some physical properties (e.g., 
height or diameter, volume, etc.) that are not forest 
biomass (Clark & Kellner 2012). Both efforts rely on 
statistical techniques to estimate biomass, using 
single-tree allometry in the case of field plots and 
plot-aggregate allometry in the case of satellite data. 
Furthermore, both approaches are subject to several 
measurement and algorithmic errors.

A variety of remote sensing sensors provide mea-
surements of biophysical and structural character-
istics of forests based on the interaction of light or 
microwave energy with forest canopy and woody 
components. These sensors are typically categorized 
into passive sensors, such as spectrometers or ra-
diometers that measure reflected or emitted radia-
tion from the Earth’s surfaces, and active sensors, 
which internally generate and emit energy and then 
measure different attributes of the returned ener-
gy bouncing back from the surface. Passive remote 
sensors measure different ranges of wavelengths of 
reflected solar radiation (optical and microwave), 
providing two-dimensional information that can be 
indirectly linked to biophysical properties of vegeta-
tion (Rosette et al. 2012, Shugart et al. 2010). Exam-
ples of passive systems include Landsat (measuring 
the visible spectrum), QuickBird (visible to near-in-
frared), AVIRIS, and MODIS, with the latter two mea-
suring from visible to infrared (Hyde et al. 2006). 
On the other hand, active sensors are designed to 
work at limited wavelengths, such as lidar in visible 
or near-infrared wavelengths (Drake et al. 2002) 
or radar in microwave long wavelengths (Shugart 
et al. 2010). For more details on remote sensing 
techniques for forestry applications, see Zhang & 
Ni-meister (2013), Wulder & Franklin (2012), Zolkos 

et al. (2013), Saatchi et al. (2011b), and LeToan et 
al. (2011). Here, for the sake of brevity, the remote 
sensing techniques for forest structure and biomass 
are divided into two categories:

(1) The first category refers to remote sensing ob-
servations that provide the most direct mea-
surements of forest structure, such as canopy 
height from lidar sensors on either airborne 
or spaceborne platforms. Lidar sensor mea-
surements must be treated similarly to ground 
measurements such as tree height measure-
ments using a laser ranger or clinometers in 
the field. In both cases, the measurements are 
relatively direct. Height is measured from laser 
altimetry from air or space, and from distance 
and angle measurements in the ground. There 
is strong evidence that tree height can be mea-
sured as accurately if not better than ground 
measurements using small-footprint (<1 m) 
lidar systems (Asner et al. 2010). Here, the 
measurement errors can be treated the same 
as measurement errors in the field (Dubayah et 
al. 2000, Lefsky et al. 2002, Lefsky 2010).

(2) The second category refers to active remote 
sensing observations that provide indirect 
measurements of forest structure, such as 
active radar sensors for forest volume or bio-
mass and height. In this case, radar backscatter 

measurements provide strong sensitivity to 
forest structure and biomass. This sensitivity 
may be asymptotically reduced when biomass 
increases to a range of more than 100 to 150 
Mg/ha at L-band wavelengths (~25 cm) (Saatchi 
et al. 2011b, Mitchard et al. 2011, Mermoz et 
al. 2015), and more than 200 to 300 Mg/ha at 
P-band wavelengths (~70) (Saatchi et al. 2011b, 
LeToan et al. 2011, Sandberg et al. 2011). By 
adding interferometric radar techniques as in 
PolInSAR and TomoSAR measurements, the 
sensitivity of radar sensors may increase over 
the entire biomass range in tropical forests 
(Hajnsek et al. 2009, Minh et al. 2015, Neu-
mann et al. 2012). The high-resolution, two-di-
mensional radar measurements (backscatter 
power) have provided separation of tropical 
forest biomass based on their canopy gaps, 
structure, and spatial heterogeneity (Hoekman 
et al. 2000), and have been used as an import-
ant deforestation and degradation monitoring 
tool.

Lidar and radar remote sensing techniques are 
currently recognized as the best approaches for 
quantifying and monitoring forest AGB changes 
globally. Therefore, numerous space agencies are 
attempting to improve the presence of these tech-
niques for spaceborne observation of forest bio-

Figure 5.3 
Ground and 
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measurement 
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quantify forest 
structure 
and AGB.
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mass, with NASA and the European Space Agency 
(ESA) having already approved plans to develop and 
launch lidar and radar sensors in the near future 
(Fig. 5.4). 

NASA’s GEDI (launch 2018) and NISAR (launch 
2021) missions, and ESA’s Biomass (launch 2022), 
share similar objectives for developing regional or 
global estimates of forest structure and AGB. These 
missions will address one of NASA’s key strategic 
goals for understanding changes in the Earth’s cli-
mate by focusing on the most uncertain component 
of the global carbon cycle related to terrestrial car-
bon sources and sinks. All missions providing active 
remote sensing measurements of forest structure 
must be converted to AGB using algorithmic models 
and validated by ground-estimated AGB distributed 
globally in different forest types. These missions have 
significant overlaps in terms of science objectives and 
products, but each focuses on different observations, 
employs different algorithms, and retrieves different 
AGB ranges at different spatial and temporal scales. 
The success of these missions strongly depends on 
how their science products can advance scientific and 
societal benefits.

Biomass observations at P-band will be par-
ticularly useful for high biomass density forests in 
tropical regions where there is a large uncertainty in 
quantifying forest biomass due to the lack of national 
inventory data and low efficacy of existing radar and 
optical remote sensing techniques. ESA’s Biomass 
mission’s unique contribution to the global carbon 
cycle is to provide annual carbon stocks and changes 

for old growth, secondary, and degraded tropical for-
ests. It is expected that the Biomass mission’s mea-
surement sensitivity will allow for the estimation of 
high-biomass forests (>100 Mg/ha). However, for ar-
eas of low biomass density (<100 Mg/ha), NASA’s NI-
SAR mission at L-band frequency will perform better 
in terms of accuracy and spatial resolution (<100 m). 
GEDI lidar sampling measurements of forest height 
will be acquired approximately 12 to 18 months prior 
to Biomass and NISAR data acquisitions, allowing GE-
DI-derived forest structure to integrate with Biomass 
and NISAR algorithms for improving the radar esti-
mations of forest structure and biomass. 

5.2  Forest Biomass – 
Ground Inventory

In this section, forest inventory is discussed as the 
most reliable approach for quantifying AGB at the 
local scale, as well as using airborne small-footprint 
lidar measurements as the state-of-the-art remote 
sensing technique for most accurately estimating 
AGB at landscape scales. Currently, both techniques 
are used extensively in quantifying forest carbon 
stocks at the local, regional, and national scales and 
are considered the most reliable for integrating with 
radar observations to estimate AGB. Particularly, 
airborne lidar data will allow upscaling inventory 
measurements from small plots to a scale that can be 
useful in calibrating radar measurements and devel-
oping radar-based models and algorithms for AGB. 
This section will also be considered as the first step 

toward understanding how AGB is quantified and to 
what extent knowledge gained from ground and lidar 
AGB estimates could improve the radar techniques 
for AGB estimation. This section provides general 
information about ground and lidar quantification of 
AGB and also provides an example discussed during 
the SAR tutorial for demonstration.

5.2.1.  FOREST INVENTORY SAMPLING

Forest inventory measurements include both the 
direct measurement of biomass of individual trees 
from destructive harvesting, or indirect estimation 
through measurements of tree size and inference us-
ing allometric relationships (Gibbs et al. 2007, Brown 
1997, Chave et al. 2005, Keller et al. 2001). However, 
before an allometric equation can be used, ground-
based forest inventory data must be collected using 
standard techniques at local, regional, or national 
scales. Systematic or random sampling designs (ei-
ther of the entire forest area or stratified segments) 
are two broad techniques used to collect data that 
allow mean biomass to be estimated with low uncer-
tainty. 

Stratification of sampling with broad forest types 
can greatly increase the efficiency of surveys by en-
suring that major variations are captured. These 
approaches are well established within the forestry 
community in most developed countries and can be 
readily adopted in tropical regions if access, cost, and 
institutional infrastructure issues are resolved. How-
ever, despite the availability of numerous methodolo-
gies for quantifying forest biomass in tropical regions 
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from ground sampling, there are still fundamental 
problems associated with sampling, measurement, 
and allometric uncertainty that must be addressed by 
the research community (Chave et al. 2014, Saatchi 
et al. 2015, Ngomanda et al. 2014, Lima et al. 2012, 
Chen et al. 2015, Katerrings et al. 2001).

5.2.1.1  Statistical Sampling 

The conventional methodology for estimating 
the forest AGB in any location relies on statistical 
sampling approaches and is recommended by var-
ious protocols and guidelines for GHG inventory in 
forestlands (IPCC Chapter 4 2006). These sampling 
techniques have been used in most NFI systems in 
developed countries and include systematic random 
sampling approaches, as in examples of U.S. forest 
inventory data (Fig. 2.1) (Heath et al. 2011), Swedish 
NFI (Reese et al. 2003), Finland NFI (Tomppo et al. 
2011), Canada NFI (Stinson et al. 2011), and China 
NFI (Zeng et al. 2015). A concise summary of the sam-
pling designs in European countries can be found in 
the literature (Tomppo et al. 2011, Lawrence et al. 
2010). Most of these countries use either detached 
field sample plots or clusters of plots, and there are 
variations in sampling density and the associated 
uncertainty. The forest area represented by one plot 
varies from 50 ha in the Walloon region in Belgium to 
about 2,500 ha in the U.S. and 267,700 ha in Canada. 
There is also quite a high level of diversity in estima-
tion methods and the use of tree allometry based 
on the measurements. The reports in Tomppo et al. 
(2010) present more detailed descriptions of these 
countries’ inventory methods and changes in the de-
signs (Zeng et al. 2015).

An approach similar to the NFI systems for bore-
al and temperate forests can be applied to tropical 
countries with the additional consideration of diver-
sity of species, structure, and requirements for preci-
sion of estimates. The sample size and the shape and 
the configuration of the samples will be an important 
element in creating a probabilistic sampling design 
at the national or regional scale. Large plots and a 
higher number of samples provide more precise AGB 
estimates at the national or subnational scales. How-
ever, other factors such as the degree of difficulty in 
establishing large plots in complex terrains, costs, 

and the time associated with field surveys signifi-
cantly contribute to the choice of sampling size and 
configurations (McRoberts et al. 2013). 

5.2.1.2  Inventory Measurements and 
Biomass Allometry

 Inventory has a long history from tree-based 
size and density measurements for harvesting and 
timber extractions. In general, trees are constrained 
in their geometry and display striking regularities 
in their structures. These regularities allow tree 
diameter measurements to be transformed into 
other variables of interest. There are two preva-
lent explanations for these regularities: One in-
volves the mechanical strength required to support 
standing wood structures, and the other involves 
the constraints of transporting water up through 
a tall structure composed of hollow tubes. Trees 
essentially respond to both of these constraints by 
developing a complex but regular architecture that 
can be characterized in either case by the use of sta-
tistically calibrated equations known as “allometric 
equations.” Also, tree diameter can be related to 
other attributes such as total tree mass, the area of 
a tree’s foliage, etc., by allometric equations (West 
& Brown 2005, Chave et al. 2005).

Most trees do not grow symmetrically over 
their lifespans. Small trees have a disproportion-
ally larger amount of leaves and less woody tissue 
than large trees (Hallé & Oldemann 1975, Hallé et 
al. 1978). Structural models based on tree size and 
mechanical strength were derived for engineering 
problems for constructing ships where diameter, 
height, and type of wood were used to calculate 
the mass. In forestry, similar type measurements 
have been used to quantify the size of trees and the 
density of the wood for logging and commercial use 
of wood. An allometric relationship can be found 
between tree height and sapwood area that scales 
isometrically, on average, with the tree trunk cross 
section. This relationship varies as a consequence 
of morphological and ecophysiological species-spe-
cific responses to different habitats and hydraulic 
constraints. However, it will ultimately converge on 
an approximately two-thirds scaling rule as the size 
of the tree increases (McMahon 1973). 

The allometric models are developed for each 
forest type and are based on empirical relationships 
between mass and tree diameter and height. Howev-
er, these empirical relationships are difficult to obtain 
logistically, particularly for remote locations and trop-
ical forests. Most calibrations are sparse with respect 
to data on larger diameter trees. Since the equations 
are fitted to the data using a log-transformed model, 
the errors associated with the larger diameter trees 
are very large (Chave et al. 2005, Chambers et al. 
2001). In mature natural forests, a large percentage 
of the total mass is associated with the largest trees, 
so this is potentially a significant source of error and 
bias (Shugart et al. 2010).

5.2.2  PRACTICAL GUIDE FOR PLOT DESIGN 
AND SAMPLING 

Several guidelines exist for designing plots for 
forest or general vegetation inventory and for struc-
ture and biomass characterization. It is recommend-
ed that interested readers consult with documents 
such as the RAINFOR protocols for plot design and 
measurements and Winrock International. The doc-
uments can be downloaded from the following links:

• http://www.rainfor.org/upload/ManualsEn-

Figure 5.5 Trees with complex structure 
associated with tree buttress. Photo by 
Sassan Saatchi, Costa Rica, 2007.

http://www.rainfor.org/en
https://www.winrock.org/
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
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g l ish/R A INF OR _ f ield _ manual _ver s ion _
June_2009_ENG.pdf

• ht tps://www.winrock.org/wp-content/up-
loads/2016/03/Winrock_Terrestrial_Carbon_
Field_SOP_Manual_2012_Version.pdf

The following guidelines are designed to help in 
establishing plots for remote sensing, specially SAR 
biomass estimation applications: 

(1) Location. Select the general area of the plot loca-
tions for the study area. Depending on the remote 
sensing applications, the general location may be 
selected from an area with the following criteria:
• Reasonably homogenous soil parent material 

and soil type
• Adequate access
• Reasonably slopped or flat terrain to avoid 

complex plot establishment and difficult of 
relating it to radar or lidar data

• Sufficient long-term security from human dis-
turbance

• Sufficient long-term institutional support in 
case of permanent and monitoring plots

• Avoid areas that have not had frequent dis-
turbance, particularly if the plots are used for 
developing models for remote sensing map-
ping, or calibration and validation of remote 
sensing products

(2) Sample design also depends on the application. 
For most inventory applications, the landscape 
is divided based on some stratification of vege-
tation type, soil, or topography; and the samples 
are designed to represent the structure of each 
strata. Within strata, plots should be random-
ly located, to avoid ‘majestic forest’ bias and 
provide statistically unbiased estimate of the 
structure and biomass for each strata. If maps 
are available, plot location should be randomly 
assigned prior to going to the field. If not, in the 
field, the position of the plot starting point can be 
randomized by locating it in a random direction at 
a random distance of the original location.

(3) Plot Size, Shape, and Orientation. Sample plots 
can be designed in a variety of size, shape, and 
orientations depending on some trade-off be-
tween accuracy, time, and cost of measurements. 
In addition, the vegetation type and the terrain 

may also influence the choice of plot charac-
teristics. Different requirements for plots were 
discussed and presented earlier. The guidelines 
here will cover the plot size and shape for both 
the ground-estimation of biomass and for remote 
sensing data analysis. 
• Plots can be circles, squares, or rectangles. 

Experience has shown that small circular plots 
are more efficient because the actual bound-
ary around the plot does not need not to be 
marked. But these plots are often used for na-
tional inventory and may not be used to repre-
sent remote sensing pixels. Circular plots are 
easy to establish when they are small. Large 
circular plots are difficult to establish on the 
ground because of uncertainty in delineating 
the boundary. Rectangular plots are also easy 
to establish and depending on the size of the 
rectangle and its orientation, the plot can be 
easily matched with pixels. If the rectangular 
plots are elongated in shape when laid out on 
the ground, they may significantly longer edg-
es than circular plots that may introduce errors 
in number of trees.

• The choice of plot size also depends on the 
application or remote sensing data, the ac-
curacy of biomass estimation, and the type 
of forests. For SAR studies, large plot size 
>0.25 ha or >1-ha depending on the SAR pixel 
size and speckle noise is recommended. It is 
possible to calculate the appropriate plot size 
specifically for each project; however, this 
adds an additional complication and an addi-
tional effort to the process. The size of trees 
and the diameter threshold of trees may also 
influence the plot size. It is possible to calcu-
late the size of the plot based on precision and 
effort and the application. Prior to initiation 
of plot measurement, it is recommended that 
limited sampling take place to determine the 
size of the largest trees. In a land cover stra-
tum with few trees greater than 50 cm dbh, 
the minimum stem diameter measured within 
the largest nest may need to be adapted. For 
non-forest, savanna, and woodland strata, 
nest plot sizes, and stem diameter sizes will 

need to be delineated. 
• There are also nested plots that may help to 

have large plots and a cost efficient approach 
in collecting tree measurements. Nested plots 
are composed of several plots (typically 2 to 
4, depending upon forest structure) plots 
and each plot in the nest should be viewed 
as being a separate plot. According to Winrock 
guidelines, in ecosystems with low structural 
variation, such as single species, even-aged 
plantations, or in areas where trees do not 
exist, a single plot can be effectively used.

• For orientation, N/S and E/W directions for 
the principal axes of the plot are the most 
convenient and also most compatible with the 
remote sensing pixel comparison. Note that 
when establishing plots using GPS, record the 
true or magnetic north to be able to accurately 
delineate the boundaries of the plot in the re-
mote sensing imagery. 

(4) Topography may impact the plot size and orienta-
tion in the field. It is important to record the planar 
distance if used to set up the plot and the angle of 
the slope. These values will allow calculating the 
area of the plots established on slopped terrains. 

(5) Measurements in the plots also depends on the 
size of trees and the type of vegetation. However, 
in general the measurements should include:
• The size of trees (diameter, height, crown size, 

etc.), identification of tree species for quantify-
ing their wood density or specific gravity from 
existing data or measurements of wood den-
sity (see for example measurement protocols 
by Jerome Chave: http://www.rainfor.org/
upload/ManualsEnglish/wood_density_en-
glish[1].pdf).

• Plot dimensions and location by using GPS 
units. Latitude/longitude, among other mea-
surements for the plot geometry and location 
will be elevation, bearings of plot boundaries, 
and local landmarks to assist plot relocation. 
It is recommended that GPS measurements 
include several plots along different axis of the 
plots (e.g., GPS for every 20 m within the plot 
for a 1-ha plot (100 m x 100 m) to increase the 
accuracy of plot location, size, and orientation. 

http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock_Terrestrial_Carbon_Field_SOP_Manual_2012_Version.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock_Terrestrial_Carbon_Field_SOP_Manual_2012_Version.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock_Terrestrial_Carbon_Field_SOP_Manual_2012_Version.pdf
http://www.rainfor.org/upload/ManualsEnglish/wood_density_english%5b1%5d.pdf
http://www.rainfor.org/upload/ManualsEnglish/wood_density_english%5b1%5d.pdf
http://www.rainfor.org/upload/ManualsEnglish/wood_density_english%5b1%5d.pdf
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5.3  Forest Biomass – Lidar 
Remote Sensing Inventory

5.3.1  LIDAR FROM AIR AND SPACE

Airborne lidar measurements can be used for both 
mapping and sampling inventory of forest structure, 
as in most national inventory techniques (Figure 
5.6). This is mainly due to the accuracy of high-reso-
lution airborne lidar measurements for measuring tree 
height, vertical structure, and horizontal distribution 
of tree crowns and gaps (Ferraz et al. 2016). For air-
borne sensors, a significant area over the landscape 
(100–10,000 ha) can be readily mapped at about 1-m 
spatial resolution (Asner et al. 2010). 

Capable of acquiring elevations with centimeter-lev-
el accuracy, small-footprint airborne lidar has had a 
revolutionary impact on 3D imaging of the Earth’s sur-
face and forest structure. More commonly, small-foot-
print airborne lidar sensors have been employed to 
detect vegetation and describe the canopy structure 

for applications such as habitat modeling, forest in-
ventory, and biomass studies. Airborne small-footprint 
(<1 m) lidar measurements are mainly discrete-return 
or waveform sensors working in near-infrared (1,064 
nm) wavelengths and flying at low altitudes, depend-
ing on the presence of cloud and lidar measurement 
requirements. Other new lidar technologies working 
in different optical wavelengths and photon counting 
capabilities are available for a combination of appli-
cations (Moussavi et al. 2014). Small-footprint lidar 
records multiple of points for each unit area (1 m2) 
with high precision of the altitude of each point within 
the canopy, allowing a detailed measurement of the 
forest vertical profile. The airborne sensors are widely 
available in tropical regions and can be used to acquire 
data over significant areas either for wall-to-wall cov-
erage (Mascaro et al. 2011b, Meyer et al. 2013) or as 
inventory samples for regional and national carbon 
assessments (e.g., BioREDD in Colombia, the World 
Wildlife Fund (WWF) program in the Democratic Re-
public of the Congo (DRC), lidar inventory in Brazil, and 
the NASA Carbon Monitoring System (CMS) program 

in Kalimantan). These airborne lidar inventory samples 
are all based on a Verified Carbon Standard (VCS) 
VT0005 methodology tool developed by Sassan Saat-
chi in Colombia and certified by Terra Global Capital 
(Tittmann & Saatchi 2015).

Existing spaceborne lidar technology works at only 
large-footprint (25- to 80-m radius) elliptical or circular 
plots over the landscapes along orbital tracks or sen-
sor beams, providing a systematic sampling of forest 
structure (Lefsky 2010). In this case, the density of sam-
ples will increase as the satellite’s orbit drifts along the 
Earth’s surface. Large-footprint lidar measurements 
have the advantage of being treated as a plot includ-
ing a large number of trees and being matched with 
ground measurements for relating the sensor forest 
height measurements to AGB.

Data acquired over global forests in 2003–2008 
from the Geoscience Laser Altimeter System (GLAS) on 
board the Ice, Cloud, and land Elevation Satellite (ICE-
Sat) provided millions of footprints that can be treated 
as inventory samples (Fig. 5.7). 

These footprints have an average size of approxi-

h

~64m 

Figure 5.6 Example of forest canopy height 
measured by airborne lidar over old growth, 
degraded, and swamp forests of the Congo Basin 
in Democratic Republic of Congo (data from WWF/
UCLA Carbon Map and Model Project).

TROPICAL FOREST VERTICAL PROFILE

AIRBORNE LIDAR CANOPY HEIGHT MODEL

Swamp Forest

Terra firme 
Forest

Logged Forest

20km

> 60m 

0m

Figure 5.7 GLAS lidar measurements across tropical forests showing systematic sampling of 
forest vertical structure at large footprints suitable for estimating AGB for each sample location.
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mately 0.25 ha (0.16–0.5 ha) spaced at about 172-
m intervals along the orbits over the landscape (see 
Fig. 5.7). The GLAS lidar samples do not follow any 
a priori design, as they randomly capture different 
forest types and provide a reasonable set of data to 
be treated as forest inventory. A series of studies us-
ing GLAS data have successfully demonstrated GLAS 
data capabilities for estimating forest canopy heights 
(Lefsky et al. 2007, Rosette et al. 2008) and forest bio-
mass (Lefsky et al. 2005, Nelson et al. 2009, Neigh et 
al. 2013). The studies consider the statistical nature 
of GLAS shots and the potential spatial correlations of 
samples for estimating regional mean and variance of 
forest structure or biomass (Neigh et al. 2013, Næsset 
et al. 2011, Saatchi et al. 2011a, Baccini et al. 2012). 

5.3.2  LIDAR BIOMASS MODELS

Allometric models for converting lidar measure-
ments of forest height or vertical structure into AGB 
have been developed for different forest types glob-
ally (Næsset et al. 2010, Nelson et al. 2010, Asner 
& Mascaro et al. 2014). These models are often in 
the form of power law and based on one or sever-
al lidar height metrics (Drake et al. 2002). The most 
common models use the mean top canopy height 
from small-footprint lidar or a height metric such 
as the height of the median energy (HOME) or per-
centile height from large-footprint lidar from air and 
spaceborne sensors (Asner & Mascaro 2014, Drake 
et al. 2002). Similar to ground estimation of AGB, 
the allometry models may vary from location to lo-
cation, capturing differences in the tree growth and 
diameter height allometry of forests. Some exam-
ples of allometric model variations show significant 
variations in height to biomass models (Fig. 5.8). 
The use of multiple height metrics derived from the 
pseudo-waveforms from either small-footprint lidar 
or large-footprint lidar sensors can contribute to im-
proving biomass estimation uncertainty over larger 
regions (Meyer et al. 2013, Saatchi et al. 2011, Neigh 
et al. 2013, Andersen et al. 2014). However, so far 
there is no universal model to convert the lidar height 
measurements into AGB on a continental scale, and 
by acquiring data in different forest types and cali-
brating the lidar data with ground forest inventory 
plots, new models are being developed. 

5.3.3  PRACTICAL GUIDE FOR PRODUCING 
LIDAR AGB MAPS

Lidar-biomass models are developed from 
ground plot level estimates of biomass and lidar 
height metrics. The following six steps must be 
considered in the model development:

(1) Relation between ground estimation of 
biomass and lidar height metrics depends 
strongly on the plot size. For developing mod-
els, the plots sizes have to be large enough 
to include a large number of trees (50–100) 
such that the mean biomass density estimate 
of the plot from the allometric model has low 
uncertainty. 

(2) Depending on the forest types and size of 
trees, the plot size may vary. For boreal for-
ests dominated by conifers, plots of >0.1 ha 
may contain enough trees and have accurate 
ground estimates of biomass. For tropical 
forests, plot sizes must be larger than 0.25 
ha to guarantee the presence of enough trees 
for ground estimates of biomass with low 
uncertainty and lidar metrics that represent 
forest structure at a scale much larger than 
the crown of a large tree. 

(3) The shape of the plots may also influence the 
accuracy of the lidar-biomass models. Square 
plots are recommended as the best options 
for most forest types, because square plots 

of any size are easy to establish and have 
smaller edge lengths compared to rectan-
gular plots. Circular plots are difficult to es-
tablish unless they are small, particularly in 
tropical forests. 

(4) Models developed from small plots may in-
troduce large bias in biomass estimation (see 
Fig. 5.9) due to edge effects and large vari-
ations of biomass at small scales that cannot 
be explained by forest height only. This is 
particularly the case in unmanaged forests in 
temperate and tropical regions (Chave et al. 
2004, Meyer et al. 2013). 

(5) The height metrics used in developing a li-
dar-biomass model are important in large-
scale applicability of the model. It is recom-
mended that models are developed with 
height metrics that remain strongly related 
to AGB across the landscape when the for-
est structure varies due to variations of soil 
type and moisture, topography, and various 
levels of successional stages. For example, 
the mean top canopy height (MCH) is shown 
to be a robust metric for capturing the bio-
mass variations across the landscape (Asner 
& Mascaro 2014, Meyer et al. 2013, Lefsky 
2010). MCH from small-footprint lidar has 
not only information about the height of 
trees within the plot but also carries infor-

Figure 5.8 Examples of lidar biomass allometric models used in converting airborne lidar data to 
AGB. Variation across models suggests that the lidar models focused on one parameter only may vary 
significantly for different forest types, similar to ground allometric models

Asner and Mascaro et al., 2013

LH (m)
Es

tim
at

ed
 A

GB
 (M

g/
ha

)

Hawaii AGB = 12.07 x LH0.927

Madagascar AGB = 3.61 x LH1.056

Peru (N) AGB = 0.2601 x LH1.9337

Peru (S) AGB = 0.4356 x LH1.7551

Colombia AGB = 2.1 x LH1.268

Saatchi, unpublished data

LH (m)

Es
tim

at
ed

 A
GB

 (M
g/

ha
)

Gabon AGB = 0.065 x 0.613 x LH2.67

BCI AGB = 1.772 x 0.592 x LH1.66

LaSelva AGB = 9.779 x 0.475 x LH1.09

Colombia AGB = 0.025 x 0.593 x LH3.05

Combined AGB = 0.465 x 0.588 x LH2.07



THE SAR HANDBOOK 

mation about gaps and spatial extent of tree 
cover. Theoretically, MCH includes the aver-
age of tree heights or crown areas within an 
area and therefore shows strong correlation 
to basal area, and hence AGB. The equiva-
lent of MCH in ground measurements is not 
the mean height of trees but the basal area 
weighted height of the trees within the plot, 
the so-called “Lore’s Height of forest plot” 
(Lefsky 2010, Saatchi et al. 2011a).

(6) The form of the model may also become im-
portant in biomass estimation and error as-
sessment. In most applications, the use of a 
power-law between the AGB and the height 
metrics provides the most reliable model 
for converting forest structure to biomass. 
A power-law or model also appears to be 
used extensively in allometric models devel-
oped from tree harvesting (Chave et al. 2005, 

Brown et al. 2001). The use of a power law or 
logarithmic model between AGB and forest 
height metrics derived from airborne lidar 
data is recommended.

5.4  SAR Remote Sensing of 
Forest Biomass

SAR backscatter measurements are sensitive to 
vegetation AGB. Observations from a spaceborne 
SAR can thus be used for mapping AGB globally. 
However, radar sensitivity to AGB values changes 
depending on the wavelength and geometry of the 
radar measurements and is influenced by surface to-
pography, structure of vegetation, and environmental 
conditions such as soil moisture and vegetation phe-
nology or moisture. All algorithms or models used to 
estimate AGB from SAR measurements must account 
for all variables that impact SAR measurements. This 

section provides a discussion of the overall sensitivity 
of radar backscatter to AGB to assist users in choosing 
the best combination of frequency, polarization, and 
incidence angles to develop AGB estimation models 
or algorithms. The impacts of forest structure spatial 
variation and errors associated with the geolocation 
of the plots used to relate the backscatter to biomass, 
the radar measurement geometry, and speckle noise 
all are important factors that influence radar sensitiv-
ity to forest structure and AGB.

5.4.1  RADAR SENSITIVITY TO FOREST 
STRUCTURE AND BIOMASS

Radar observations of vegetation have been stud-
ied for more than four decades, both theoretically 
and experimentally (Ulaby et al. 1982, Tsang et al. 
1985, Ulaby & Dobson 1989, Cloude 2014). These 
studies have shown that the radar measurements 
depend strongly on the structure, dielectric proper-

Figure 5.9 Ground plots of different size and lidar-derived models with MCH in tropical forests of Barro Colorado Island in Panama. The plots under the 
1-m resolution lidar data suggest that at scale of 20 m x 20 m, (a) there is large bias in the model but gradually at areas of 50 m x 50 m, (b) 100 m x 100 
m, and (c) the model improves, and the estimate of biomass can be done without significant bias.
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ties of vegetation components, and underlying soil 
surface depending on the frequency of the operation 
(Saatchi et al. 1994, Saatchi & McDonald 1997, Ulaby 
et al. 1990). The soil is most commonly described as 
a homogeneous medium having a complex dielec-
tric constant that is a function of the volumetric soil 
moisture, as well as the soil texture, temperature, 
and bulk density; several empirical models exist for 
this relationship (Dobson & Ulaby 1986, Hallikainen 
et al. 1985, Mironov et al. 2004, Peplinski et al. 1995). 
Studies of soil surface scattering and soil moisture 
remote sensing at L-band have shown that surface 
scattering can be expressed in terms of soil dielectric 
constant at the top 5 cm and the surface roughness 
characteristics in terms of Root Mean Square (RMS) 
roughness height and spatial correlation length 
(Fung et al. 1992). In most SAR-related models for 
the remote sensing of soil surfaces, it is assumed 
that the effect of the spatial correlation is reduced 
significantly during the SAR azimuthal processing and 
multi-looking, and that the radar signature sensitivity 
to soil surface RMS height variation remains as the 
dominant surface structure influencing the surface 
scattering (Oh et al. 1992, Shi et al. 1997, Dubois et 
al. 1995, Baghdadi et al. 2002, Bryant et al. 2007). 
Other landscape features such as directional row or 
tillage may impact radar cross sections at 100-m spa-
tial resolution but are assumed irrelevant in natural 
vegetation such as forests and shrublands. 

In general, the radar-transmitted energy, in the 
form of an electromagnetic pulse, penetrates into the 
forest canopy and reflects back from forest compo-
nents such as leaves, branches, stems, and underly-
ing soil. Knowing the magnitude of transmitted and 
received energy, a physical relationship based on 
electromagnetic theory has been developed to relate 
the ratio of these energies to properties of the forest. 
The radar measurements are performed in different 
frequencies or wavelengths, each providing a differ-
ent penetration into the vegetation and soil and sen-
sitivity to vegetation biomass. 

The measurements are performed in a combina-
tion of transmit and receive polarizations (Horizontal 
(H) and Vertical (V)) at an off-nadir incidence angle 
and at a spatial resolution projected on the radar 
range direction. Therefore, radar backscatter sensi-

tivity to AGB at any frequency and polarization com-
bination (e.g., HH, HV, VV) depends on two sets of 
parameters: (1) measurement geometry (such as inci-
dence angle and location and size of the image pixels 
with respect to the size and the orientation of ground 
plots) and (2) forest structural parameters (such as 
the size (volume) and density of trees (number per 
resolution cell), orientation of forest components 
(leaves, branches, stems), underlying surface condi-
tions (moisture, roughness, and slope)); and (3) the 
dielectric constant that in turn depends on the vege-
tation water content or specific gravity (i.e., the wood 
density) (Dobson et al. 1995, Saatchi & Moghaddam 
2000). In the following subsections, the sensitivity of 
SAR measurements to these parameters are briefly 
examined, and examples and references for further 
reading are provided.

This section focuses on radar frequencies that are 
either operational or will be operational in future, 
and have strong sensitivity to vegetation AGB. Exam-
ples of SAR imagery are provided at C-band, L-band, 
and P-band frequencies. Among these frequencies, 
C-band (Sentinel, RadarSAT) and L-band (ALOS, PAL-
SAR) are operational satellites and will be continued 
in the future for forest biomass monitoring in the 
L-band NISAR system (launch 2021). In 2022, ESA 
will launch a P-band SAR mission dedicated directly 
to monitoring forest structure and biomass globally. 

5.4.2  RADAR WAVELENGTHS AND FOREST 
STRUCTURE

Usually SAR data are acquired at X-, C-, and L-band 
frequencies for remote sensing of the environment 
from airborne and spaceborne platforms. Other fre-
quencies such as P-band and S-band have also been 
used for remote sensing applications but only on air-
borne platforms, with plans to be implemented for 
space observations in near future. A P-band sensor 
has been designed for ESA’s future Earth Explorer 
Biomass mission, and an S-band sensor is ISRO’s 
contribution to the NISAR mission. A summary for 
typical radar frequencies and wavelengths is shown 
in Chapter 2, Table 2.3. 

Excellent studies have been previously conduct-
ed on examining radar backscatter properties from 
forest areas (e.g., Freeman & Durden 1998, Dobson 

et al. 1992, Ranson et al. 1997). Most scattering oc-
curs when the particles are on the scale of the radar 
wavelength. Thus, in the case of forests, L-band back-
scatter arises more from the trunk and the branches 
of trees, whereas X-band backscatter arises more 
from their leaves and needles. Also, microwave pen-
etration depth in forests varies depending on the 
frequency. While L- and P-band can penetrate deep 
into forests, X-band can get reflection from the cano-
py level. The backscatter sensitivity to forest compo-
nents as seen by SAR systems operating at different 
frequencies is shown in Figure 5.10. For biomass 
estimation, L-band and P-band sensors are therefore 
preferred over higher frequencies and smaller wave-
lengths for two reasons: (1) at these bands, the radar 

Figure 5.10 Sensitivity of SAR measurements to 
forest structure and penetration into the canopy 
at different wavelengths used for airborne or 
spaceborne remote sensing observations of the 
land surface.

X-BAND 3 cm

C-BAND 6 cm

L-BAND 24 cm

P-BAND 65 cm
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waves or energy can penetrate the tree canopy and 
scatter from larger woody components of the forest, 
and (2) the scattering from larger tree components, 
unlike leaves, are more stable temporally and re-
main highly coherent over the acquisition period 
in the case of repeated measurements for change 
detection or interferometric applications (Le Toan 
et al. 1992). 

At higher X- and C-band frequencies, SAR pen-
etration will be limited to the upper forest canopy 
dominated by leaves and smaller branches unless 
used in very sparse forest covers such as woodlands 
and savannas. High-frequency radar systems such 
as Sentinel and RadarSAT operating at C-band and 
Terra-X SAR operating at X-band provide measure-
ments that are more sensitive to the biomass in 
low-density forests (e.g., sparse savannas), shrub-
lands, grasslands, or agricultural crops (Wigneron 
et al. 1999, Saatchi et al. 1994). 

Recent studies have focused on the relationship 
between AGB and radar typically use spaceborne 
SAR data from ALOS PALSAR (L-band, λ = 23.62 cm), 
and airborne SAR data from both P-band and 
L-band frequencies (LeToan et al. 2011, Saatchi et 
al. 2011b). 

The radar scattering forest stem and large 
branches at low frequencies or large wavelengths is 
considered the main reason radar sensors are used 
for estimating forest volume and biomass. to trunk 
and crown biomass and moisture content [16,25]. 
Past studies have found that the radar backscat-
ter increases with increasing forest AGB from low 
to medium levels of AGB, but gradually loses its 
sensitivity to higher AGB levels and asymptotes to 
a saturation level, resulting in a logarithmic or sig-
moidal relationship between AGB and backscatter 
(Dobson et al. 1992, LeToan et al. 1992, Saatchi et al. 
2011). The asymptotic or the saturation level varies 
based on the radar wavelength and forest type and 
structure. Results from the airborne AIRSAR (Fig. 
5.11) and E-SAR data suggest that saturation may 
vary between 80 and 150 Mg·ha−1 for L-band radar 
(15–30  cm wavelength) and 200–350  Mg·ha−1 for 
P-bands, with a wavelength of ~70 cm (Saatchi et 
al. 2011, LeToan et al. 2011, Mitchard et al. 2009, 
Bouvet et al. 2018, Villard et al. 2015).

5.4.3  RADAR SCATTERING AND FOREST 
STRUCTURE

The impact of vegetation structure and biomass 
on SAR data can be investigated by modeling the 
dominant scattering mechanisms controlling the SAR 
measurements. A variety of approaches exist for mod-
eling vegetation media, including the characterization 
of forest vegetation structure, known as scatterers or 
scattering components such as stems, branches, and 
leaves in terms of canonical dielectric cylindrical or 
disk shapes with specified size and orientation distri-
butions. The dielectric constants are assigned to each 
scattering component to reflect the live wood of trees 
and leaf material as well as their water content (Saatchi 

et al. 1994, Saatchi & McDonald 1997, Saatchi & Mogh-
addam 2000, Yueh et al. 1992, Lang et al. 1983, Karam 
et al. 1992, Ulaby et al. 1990). The total SAR backscatter 
from vegetation arises from a combination of scattering 
and attenuation of individual scattering components 
that can be represented as a sparse scattering medium 
(Lang 1981, Saatchi et al. 1994, Chauhan et al. 1994). 
This approach requires knowledge of tree structure 
(size, orientation, and density; or equivalently species 
and biome), dielectric constant, and ground charac-
teristics (RMS height, correlation length, and dielec-
tric constant of soil surface). Figure 5.12 provides a 
general schematic of the three dominant SAR scattering 
mechanisms in the forest ecosystems.

Figure 5.11  Examples of SAR imagery at C-, L-, and P-band frequencies from the AIRSAR system 
over tropical forests along the Ja River in Papua New Guinea showing differences of penetration and 
impacts of forest structure and underlying moisture on SAR false color composite (HH, HV, VV) imagery. 

R: HH
G: HV
B: VV

C-BAND L-BAND P-BAND

R: P-BAND, G: L-BAND, B: C-BAND

Figure 5.12 Dominant scattering mechanisms of L-band SAR measurements of forest ecosystems 
contributing to polarimetric backscatter observations.
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The backscattering coefficient measurement by 
SAR systems can be expressed as the combination 
of three scattering components (Fig. 5.12): (1) 
volume (vol ) scattering, (2) volume and surface 
interaction (vol-surf ), and (3) surface scattering 
(surf ):

   σpq
o =σpq−vol

o +σpq−vol−surf
o +σpq−surf

o   ,  (5.1)

where p and q denote polarization of transmitted 
and received radar signals, respectively, that can 
be assigned either vertical (V) or horizontal (H) for 
a linear polarization radar system. The three dom-
inant scattering terms are derived from basic elec-
tromagnetic theory by solving Maxwell’s equations 
in a discrete random media (Saatchi & Lang 1989, 
Lang 1981, Tsang & Kong 1988, Saatchi & McDonald 
1997, Chauhan et al. 1991). 

There are simpler approaches that only use 
the Vegetation Water Content (VWC) to provide 
analytical forms for attenuation and scattering ef-
fects. The most common model used in microwave 
frequencies is the Water Cloud Model, which in-
cludes two scattering components from vegetation 
volume and its underlying ground but ignores the 
volume-ground interaction (Attema & Ulaby 1978) 
that becomes dominant in forest ecosystems and 
for longer wavelength radar observations. There-
fore, the Water Cloud Model is mainly applicable at 
shorter wavelengths (C-band and above) (Matzler 
1994, Ulaby & El-rayes 1987) fails to represent the 
SAR vegetation interaction at longer wavelengths. 

5.4.4  SAR POLARIZATIONS AND FOREST 
STRUCTURE

Transmitted and received radar signals propa-
gate in a certain plane of polarization. Most radars 
are designed to transmit microwave radiation ei-
ther horizontally polarized (H) or vertically polar-
ized (V). Similarly, the radar antenna can receive 
either the horizontally or vertically polarized back-
scattered energy, and some radars can receive 
both. Different combination options for radar po-
larization (listed below) will provide different im-
age characteristics:

• Single-polarization—the radar system 

operates with the same polarization for trans-
mitting and receiving the signal

• Cross-polarization—a different polariza-
tion is used to transmit and receive the signal

• Dual-polarization—the radar system op-
erates with one polarization to transmit the 
signal and both polarizations simultaneously 
to receive the signal

• Quad-polarization—H and V polariza-
tions are used for alternate pulses to transmit 
the signal and with both simultaneously to 
receive the signal (Fig. 5.13). 

Among the quad-polarization configurations, 
there are also several variations as in the fully pola-
rimetric measurements that include all components 
of amplitude and phase of the scattering matrix, 
and quasi-quad-polarization that includes only the 
amplitudes and not the phase due to switching the 
polarizations on different SAR transmit and receive 
pulses separating the HH/HV measurements from 
VV/VH (Raney 2007, Hensley et al. 2014). 

Polarization is therefore the key characteristic of 
radar signals propagating into tree canopies or veg-
etation volume and scatter from individual vegeta-
tion components that collectively contribute to the 
backscatter energy measured by the radar receiver 
system. Polarization as the orientation of radar 
wave vectors (at H, V, or any other polarization) in-
teract with vegetation components and backscatter 
according to the size and orientation of scatterers. 
For example, a standing live tree with near-verti-
cal orientation depolarizes the incoming waves 
with different strengths than branches or leaves. 
Using radars that provide measurements in differ-
ent polarizations allows separate vegetation with 
different structures to be reflected in the average 
size and orientation of different components. The 
best way to demonstrate this effect is by examin-
ing the radar imagery over agricultural landscapes 
with distinct crop types with uniform shapes and 
orientations (Fig. 5.14). 

5.4.5. CONFOUNDING FACTORS IN RADAR 
SENSITIVITY TO BIOMASS

The confounding variables that impact SAR mea-
surements and make interpreting those measure-

ments ambiguous can be divided into two catego-
ries: (1) environmental and (2) geometrical. 

5.4.5.1  Environmental Factors

• Two radar backscatter measurements of 
vegetated surfaces taken from the same in-
strument using exactly the same character-
istics and observational geometry may be 
significantly different without any changes 
of the vegetation structure or biomass. The 
differences may be attributed to surface con-
ditions or environmental changes (Fig. 5.15) 
between the two radar measurements and 
must be considered when analyzing the data 
(Table 5.1). 

5.4.5.2  Geometrical Factors

Unlike optical passive and lidar sensors, SAR 
measurements are performed at an off-nadir 
look direction, and being an active sensor, both 
the geometry of the observations and the geom-
etry of the targets (including both vegetated and 
non-vegetated surfaces) impact these measure-
ments. The surface topography and the orienta-
tion of slopes and aspects of the observed surface 
are perhaps the most dominant effects on the 
radar measurements. However, other factors such 
as the orientation of trees, branches, leaves, and 

Figure 5.13 Electromagnetic waves radiated 
to the landscape in horizontal and vertical 
orientations providing different linearly polarized 
measurements.
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VV Vertical transmit, vertical receive

HV Horizontal transmit, vertical receive

VH Vertical transmit, horizontal receive
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Figure 5.14 JPL UAVSAR image acquired by L-band radar showing three backscatter 
polarizations and the false-colored composites over an area in California’s Central Valley 
covered by orchards and different crops. The strength of each polarized backscatter is 
shown, relatively suggesting how certain crops are relatively higher in one of the HH, HV, 
and VV polarizations. 

HH, HV, VV

VVHH

HV

Figure 5.15 Changes of SAR backscatter in wetland forests acquired during the 
dry and wet seasons showing large backscatter difference due to inundation and 
an increase in the surface-volume scattering interaction in HH polarization.

JERS-1 HH (Dry Season) JERS-1 HH (Wet Season)

Dry Season Wet Season Table 5.1 Summary of environmental impacts on SAR measurements. 

VARIABLE IMPACTS BACKSCATTER CHANGES

Soil
Moisture

SAR backscattered measurement 
of forests is sensitive to underlying 
moisture condition and any 
changes of soil moisture due to 
precipitation events or irrigation 
can influence backscatter values. 

HH and VV backscatter, 
significantly and HV to a smaller 
degree, change with soil moisture 
depending on the density of 
vegetation cover. The volume-
surface scattering mechanism 
and direct surface scattering 
are responsible for changes 
in backscatter.  Similarly, SAR 
coherence between the data 
takes is impacted by changes of 
moisture. 

Surface
Inundation

Vegetated surfaces, particularly 
near rivers or in low elevation 
areas in wetlands, may be inun-
dated seasonally or permanently 
due to the rise of the water level 
creating a smooth water body 
submerging the vegetation at 
different levels into the water. 

Forest inundation increase the 
backscatter power by a large 
factor. The increase in power is 
significant in HH and VV due to 
volume-surface interactions.  HV 
backscatter may also change due 
to inundation due to geometry 
and forest canopy density and the 
SAR wavelength. 

Wind Presence of wind may change the 
orientation of the leaves, twigs 
and small branches with respect to 
radar observational geometry.  

The effects of wind often show up 
as random differences in the SAR 
backscatter between observations, 
introducing noise in backscatter, 
and reduction of coherence 
between two SAR observations. 

Intercepted
Water

After any rain events or early in the 
morning due to development of 
dews, there are water droplets on 
the leaves, causing both scattering 
and attenuation of the SAR signal.

Depending on the amount of 
intercepted water or the size 
of water droplets, and the 
wavelength, the radar backscatter 
may increase (at X-band and 
C-band) or reduce (at L-band 
and P-band) causing enhanced 
scattering or attenuation 
respectively. 

Water
Content

Changes of water content in trees 
and leaves from either stress, or 
diurnally and seasonally due to 
water loss and recharge of soil 
moisture impact radar backscatter.

Radar backscatter responds to 
dielectric constant of vegetation 
components and therefore the 
water content. Changes in water 
content can create significant 
changes (1-2 dB) in backscatter 
in all polarizations. Observations 
of the same time of the day and 
season can reduce this effect in 
SAR observations.
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other structures with the respect to the SAR obser-
vational geometry may also impact SAR measure-
ments (Outlined in Fig. 5.16, Table 5.2).

5.5  SAR Processing Steps 
for Biomass Estimation

Before biomass estimation from SAR measure-
ments, SAR data must be processed such that the 
pixel size and geometric attributes and environ-
mental effects are all normalized and radiomet-
rically calibrated. Although it may be possible to 
include all the SAR processing steps within the 
biomass estimation algorithm, preparing SAR im-
agery before algorithm implementation allows for 
separating the biomass estimation process from 
the data quality and calibration process. 

5.5.1 SPECKLE AND IMAGE MULTI-
LOOKING

One of the significant differences between 
active or coherent sensor imagery such as SAR 
(or laser) to passive sensors (such as that used 
in Landsat) is the effect of speckle in the spatial 
resolution of the sensor. Images obtained from 
coherent sensors are characterized by speckle. 
This is a spatially random, multiplicative noise 
due to coherent superposition of multiple back-
scatter sources within a SAR resolution element. 
In other words, speckle is a statistical fluctuation 

associated with the radar reflectivity (brightness) 
of each pixel in the image of a scene. The spatial 
resolution of a SAR sensor defines the minimum 
separation between measurements the sensor is 
able to discriminate and determines the amount 
of speckle introduced into the system. The high-
er the spatial resolution of the sensor, the more 
objects on the ground can be discriminated. The 
term “spatial resolution” is often confused with 
the pixel size, which is the spacing of the pixels in 
the azimuth and ground range direction after pro-
cessing the data. A first step to reduce speckle—
at the expense of spatial resolution—is usually 
performed during the multi-looking, where range 

and/or azimuth resolution cells are averaged. The 
more looks used to process an image, the less 
speckle there is.

The SAR signal processor can use the full 
synthetic aperture and the complete signal data 
history in order to produce the highest possible 
resolution, albeit very speckled. The data often 
received from SAR data are in different formats: 
Single-Look Complex (SLC) or Multi-Look Complex 
(MLC). SLC image data are calibrated single-look 
complex files for each polarization (HH, HV, VH, 
and VV) that are often in floating point format, 
whereas MLC files are calibrated multi-looked 
cross products that may be in either amplitude or 

Table 5.2 Summary of geometrical impacts on SAR measurements. 

VARIABLE IMPACTS BACKSCATTER CHANGES

Incidence 
angle

SAR measurements are acquired at off-nadir geometry. For 
each look direction, the radar beam scans the surface over a 
range of incidence angles. The range of incidence angles is 
larger for airborne systems (~ 20-70 degrees) but remains 
confined to only 6 to 10 degrees for spaceborne sensors.

The backscatter of vegetation surfaces vary by a factor of 2 
or more from near range (e.g. 20 degrees) to far range (e.g. 
70 degrees).  If the terrain is topographically complex, the 
impacts of incidence angle variations will be larger. Often at 
near range angles the radar backscatter return is larger than 
at far range, due the larger path length of radar waves into 
the vegetation and stonger attenuation. 

Surface
Topography

SAR’s side-looking geometry introduces displacements for 
tall objects and relief structures. The impacts of surface 
topography in radar imagery are of three kinds: shadows, 
foreshortening, and layover (Elachi et al. 1988). Radiometric 
Terrain Correction (RTC) techniques will help removing/
reducing the effects of topography.

The changes of backscatter from surface topography can be 
significant depending on the slope and aspect of the surface 
and the incidence angle. Shadows appear dark in the image 
with very low backscatter.  As the incidence angle of an 
image increases from near-range to far-range, shadowing 
becomes more prominent toward far-range. Foreshortening 
can cause compression of features in radar imagery. In the 
case of layover, the reflected signal from the upper portion 
of a surface feature is received before the return from the 
lower portion causing backscatter distortion. 

Figure 5.16 Fundamental arrangement and geometry of SAR measurements over the landscape showing (a) the radar look direction, imaging swath and 
near- and far-range locations, (b) radar pulses and returns across the slant range and the location of targets in the radar image, and (c) a UAVSAR image 
over mixed boreal forests of northern Maine at L-band polarizations showing the impact incidence angles on backscatter image.
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power for each polarization and may be provided 
either as an integer (scaled amplitude) or floating 
point (backscatter power). 

5.5.2  SAR PIXEL SIZE CHARACTERISTICS

For this application, the focus is on the multi-
looked SAR imagery at pixel sizes that are square and 
can be readily projected on the ground using the local 
incidence angle. The user may improve the SAR image 
quality by further removing the speckle with spatial 
or temporal averaging at the expense of spatial and 
temporal resolution of the data. Speckle reduction is 
particularly important when using SAR data for es-
timating forest biomass or performing other opera-
tions such as classification and image segmentation. 

When developing models with SAR backscatter and 
ground-estimated biomass from plots, the relation 
is significantly improved when speckle is reduced in 
SAR imagery. Examples of speckle reduction in imag-
ery and SAR backscatter are shown in Figure 5.17.

The speckle reduction from spatial averaging im-
pacts the radar backscatter measurements and im-
proves the relationship between the SAR pixel and 
the ground or lidar measurements. The differences 
between side-looking SAR pixels and ground plot 
and lidar pixel are shown in Figure 5.18. SAR col-
lects data along a slant range that samples only a slice 
of the forest medium under the pixel. For bare sur-
faces without a volume of vegetation, the projection 
of the pixel on the ground can readily relate the SAR 
measurements to the surface characteristics. How-
ever, in forest ecosystems, the sampling across the 
volumes always covers a sliced region into the canopy 
different from the footprint of lidar and the location 
of the ground plots. 

5.5.3  SAR RADIOMETRIC CORRECTIONS

For a correct interpretation of backscatter signa-
tures, correcting for the effects of local incidence an-
gle due to topography and normalization for the true 
pixel area are necessary steps before biomass re-
trieval. Many studies have shown that uncompensat-
ed topographic effects induce a 2- to 7-dB dispersion 
of the L-band backscatter, which is about the same 
order of backscatter range used to distinguish forest 
and non-forest contrast in SAR imagery. The RTC, in-
cluding the incidence angle normalization, will mod-
ify the backscatter values from σ0 (sigma-nought) to 
γ0 (gamma-nought). As the process of performing 
terrain correction is covered in other chapters, this 
section covers the basic information on how to con-
vert σ0 to γ0 according to:

 γ0= σ0 Aflat
Aslope

cosθref
cosθloc

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

n

  ,  (5.2)

where θref and θloc respectively represent the refer-
ence angle for the normalization of the backscatter 
(e.g., the incidence angle at the midswath of the SAR 
image) and local incidence angle derived from the 
geometry of radar with respect to the surface topog-

raphy (slope and aspect). Aflat and Aslope represent the 
local pixel area for a theoretically flat terrain and the 
true pixel area due to the slopped terrain, respective-
ly. The power n represents the power of the fit of the 
angle correction due to radar backscatter variations 
across incidence angles. For a bare surface, the ex-
ponent is equal to 1, but for vegetated surfaces, it can 
be less than 1 due to variations in scattering mech-
anisms (volume over slope) originating from canopy 
gaps and different radar penetration into the canopy. 
The value of n may also vary with polarization. How-
ever, for simplicity, n may be considered to be 1 for all 
polarizations and for most practical cases. 

All existing RTC algorithms are based quantifying 
the local incidence angle and Aslope over terrain with 
significant topography. These approaches are based 
on estimating the local illuminated area Aslope through 
either (1) the estimation of the local incidence angle 
or the projection angle (Ulander 1996) or (2) the in-
tegration of the Digital Elevation Model (DEM) (Small 
2011, Small et al. 1998). While methods based on 

Figure 5.17 Speckle reduction of SAR imagery from 
(a) 25-m (5-look) resolution ALOS PALSAR image to 
(b) 45-look (effective 75-m) spatial filtering to (c) 25-
look (5 ALOS images) temporal filtering.

A

B

C

Figure 5.18 Schematic showing the SAR volume 
sampling of a forest ecosystem within a pixel 
in comparison with the ground plot and lidar 
samples. Differences between the volumes of each 
sensor are also shown. The difference in sampled 
area is much larger between SAR and ground or 
lidar when the pixel or plot size is small or over 
the topographically complex terrain due to edge 
effects and sampled areas. At larger pixels (~1 ha), 
the difference becomes small, and the relation 
between SAR measurements and ground- or lidar-
estimated forest structure and biomass improves. 

L

H

Radar resolution (~L x L)
VR = Volume: L2 H/sinθ

Lidar footprint (~L/2 radius)
VL = Volume: πL2HT/4
T: Gaussian volume factor
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local incidence angle have the advantage of being 
simpler, methods that include DEM integration have 
been shown to be more accurate, particularly in 
steep terrain (e.g. Fig. 5.19). The DEM integration 
approach involves determining the number of DEM 
pixels belonging to each radar range and azimuth 
pixel through knowledge of the geocoding process. 
It is recommended that users of SAR imagery consult 
with existing tutorials on terrain correction available 
on NASA and ESA websites.

5.5.4  SAR Polarimetric 
Indices

The following section contains a brief discussion 
on how polarimetric signatures or indices can be 
used for monitoring forest cover or biomass in dif-
ferent landscapes. Use of signatures or indices are 
important because they are developed from a com-
bination of radar measurements, which can improve 
the sensitivity for estimating or monitoring a surface 
characteristic and can reduce other impacts. For 
monitoring forest biomass, radar backscatter mea-
surements can be impacted by variations in forest 
type and structural form (type and orientation), envi-
ronmental conditions (e.g., moisture and phenology), 
or radar imaging geometry (e.g., incidence angle and 
topography). Choosing a combination of polarimetric 
or radar measurements that can reduce these effects 
and increase a radar image’s sensitivity to forest cover 
or biomass can be regarded as a reliable monitoring 
index or parameter. Though there are more complex 
types that can be developed from either airborne 
polarimetric systems or from polarimetric interfero-
metric measurements, two simple polarization indi-
ces—the Radar Vegetation Index (RVI) and the Ra-
dar Forest Degradation Index (RFDI)—are proposed 
below for monitoring forest types and which can be 
readily produced from existing satellite SAR systems:

RVI= 
8γHV

0

γHH
0 +γVV

0 +2γHV
0( )

  ,

where γ0 represents the radiometrically and geomet-
rically corrected SAR backscattering coefficient for 
each polarization combination in linear units (m2/
m2). RVI is a ratio of cross-polarization to approxi-
mate the total power from all polarization channels; 

it generally ranges between 0 and 1 and is a measure 
of the randomness of scattering. The RVI is near 0 
for a smooth bare surface, increases with vegetation 
growth, and has an enhanced sensitivity to vegeta-
tion cover and biomass. By being a ratio, the RVI has 
less sensitivity to radar measurement geometry and 
topography and remains insensitive to absolute cal-
ibration errors in radar data. 

The RFDI is calculated as

RFDI= 
γHH

0 −γHV
0

γHH
0 +γHV

0
  ,

where the terms are all radiometrically corrected 
imagery. However, the ratio can also be used before 
any radiometric or geometric correction of the SAR 
imagery. The value of RFDI varies between 0 and 1 
because in almost in all conditions, even in most 
topographically complex terrain, HH remains larger 
than HV. However, the values of RFDI remain mainly 
at >0.3 for dense forests, to values of about 0.4 or 
more for degraded forests, and >0.6 for deforested 
landscapes (e.g. Fig. 5.20). RFDI can be used with 
dual-polarization imagery such as the ALOS PALSAR 
Fine Beam Dual (FBD) datasets. 

Figure 5.19 Examples of SAR imagery (a) before and (b) after RTC over a test site in mountains of 
Bolivia. A Sentinel SAR image before RTC (left) shows areas that are stretched and compressed due 
to the topography and geometry of image acquisition. These areas are shown corrected (right) as 
unstretched and adjusted for backscatter values after applying the RTC from the Gamma algorithm.

Figure 5.20 UAVSAR L-band polarimetric images and polarization indices over the La Selva Biological 
Station in tropical forests of Costa Rica showing: (a) three polarized channel color composite showing 
areas of relatively intact rainforest across a mountain range and low-biomass areas in the northern and 
southern parts of the image, (b) RVI image showing higher forest biomass areas in red and crops and 
agroforestry and secondary forests in green and blue, and (c) RFDI image showing more intact forests in 
dark blue and degraded, secondary, and low-biomass values in lighter blue, green, and red.
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Using data from the same satellite orbits, the geom-
etry and incidence angle do not vary over SAR pixels, 
allowing temporal analysis of RFDI without concerns for 
changes in geometry and incidence angle. In fact, RFDI 
from satellite imagery such as ALOS PALSAR or Sentinel 
can be computed without any correction for incidence 
angle and topography. The main application of RFDI is 
defined as an index to monitor changes in forest cover 
due to deforestation and degradation. The low values 
refer to forests where the effect of volume-surface in-
teraction is either small (e.g., forests with shorter stems 
and dense canopies) or relatively equal in both chan-
nels (e.g., forests over slopes). The high values refer 
to forests with large differences between HH and HV, 
suggesting they are open or recently degraded forests, 
or inundated forests. Theoretically, RFDI can be used at 
any radar resolution; however, the best spatial resolu-
tion for developing RFDI depends strongly on the speck-
le noise in radar backscatter and the natural heteroge-
neity of forest structure and gap size variations over the 
landscape where the contribution of volume-surface 
interaction is larger in HH compared to HV backscatter. 
In general, RFDI can be used to detect both the loss of 
forest cover and its recovery from disturbances resulting 
from logging or other types of natural or anthropogenic 
events. 

5.5.5  PRACTICAL SAR IMAGE PROCESSING FOR 
BIOMASS ESTIMATION

Five practical approaches for SAR processing before 
the data analysis for biomass estimation are be summa-
rized as follows:

(1) Download the SAR intensity imagery in any format 
and create imagery in linear power (not in dB). 
Linear power data, which are often provided in 
floating point, are considered the calibrated radar 
imagery that can be used to relate to any surface 
parameter or integrated in the models. Note that 
working with backscatter values in dB may intro-
duce large statistical errors in the analysis because 
all mathematical equations and algebraic relations 
must consider the logarithmic quantities. 

(2) SAR images can be multi-looked (simple averag-
ing) to create images at coarser spatial resolution 
with reduced speckle. Speckle in SAR imagery can 
also be reduced by using various SAR filters (Lee 

et al. 1999). 
(3) All SAR images acquired from satellite or airborne 

datasets must be georeferenced such that each 
ground-projected pixel has geographic coordi-
nate. Note that multi-looked SAR images with re-
duced speckle improve the relationship between 
ground measurements and SAR backscatter. De-

pending on SAR data, the multi-looked imagery 
can have different resolutions. For example, for 
ALOS PALSAR data (originally at 20 m with 3 looks), 
a 100-m image can be regarded as an image of 
about 75 looks with significantly reduced speckle. 

(4) If the data downloaded do not include RTC, use 
any commercially or freely available software to 

Landsat ETM ALOS PALSAR (HH, HV, HV/VH) RFDI

Figure 5.21 Satellite imagery over three tropical study areas, with Braulio Carrillo National Park in 
the top row; Rondônia, Brazil in the middle row; and Ebolowa in Cameroon in the bottom row. Images 
include false color Landsat ETM (RGB:543 bands) (left column), false color ALOS PALSAR images (RGB: 
HH, HV, HV/HH) (middle column), and RFDI (right column)

INDEX APPLICATION INTERPRETATION

Radar 
Vegetation Index 
(RVI)

Monitoring vegetation cover, water content, and 
aboveground biomass with quad-pol or quasi-quad-
pol data.

Range (0-1): low values refer low vegetation cover and water 
content. The low threshold can be used to separate forest 
and nonforest. 

Radar Forest 
Degradation Index 
(RFDI)

Detecting forest degradation and deforestation, bio-
mass loss and gain with dual-pol or quad-pol data. 

Range (0-1): Low values refer to high biomass and 
intact forests. Values change gradually to higher values 
for degraded and nonforest areas.  The values remain 
independent of topography. 

Table 5.3 SAR vegetation indices used with dual- and quad-polarized SAR measurements.
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perform terrain correction. NASA’s Alaska SAR 
Facility provides several software applications for 
SAR processing, including MapReady for terrain 
correction. RTC can be applied on multi-looked 
imagery given the geometry of the SAR observa-
tions and the terrain model (such as the Shuttle 
Radar Technology Mission (SRTM) data). This pro-
cess includes finding the local incidence angle and 
the area normalization factors in map (in the final 
radar ground projection) coordinates for projec-
tion angle corrections.

(5) Develop color composite images from SAR polar-
izations and SAR polarimetric indices to identify 
different features of landscape and vegetation 
covers in color without the impacts of topography 
and or SAR geometry.

5.6  SAR Biomass Estimation 
Algorithm

Performing all necessary SAR processing results in 
SAR imagery that has been corrected for terrain effects 
through RTC techniques and projected on the ground 
and multi-looked to a certain pixel spacing (e.g., 25 
m–100 m) depending on the original image resolution. 
Basic techniques are presented here to develop a ra-
dar-biomass model or algorithm for estimating vegeta-
tion/forest AGB. This section is designed to show: (1) 
the general relationship between vegetation biomass 
and radar measurements, (2) development of site-spe-
cific statistical models from either airborne or satellite 
radar data, (3) development of a physically based mod-
el that includes different scattering matrix components, 
and (4) use of machine-learning algorithms for large-
scale biomass mapping. 

5.6.1  GENERAL RADAR-BIOMASS 
RELATIONSHIP

To demonstrate the relationship between radar 
measurements and AGB, this section concentrates on 
low-frequency (large-wavelength) radar systems at 
the L-band frequency due to its availability from space 
through ALOS PALSAR and due to its strong backscatter 
sensitivity to biomass at low- to mid-ranges. However, 
some results are shown and examples given from C- and 
P-band SAR imagery, as they are available from Sentinel 
series and, in the future, from ESA’s Biomass mission. 

As discussed previously, the dominant scattering mech-
anisms as well as the size (volume) and dielectric con-
stant (moisture or wood density) of forests determine 
the magnitude and behavior of the backscatter at each 
polarization to AGB. As a result, the backscatter radar 
energy at linear polarizations is related to the volume 
and biomass of forest components (Fig. 5.22). 

The radar backscatter biomass relationships shown 
in Figure 5.22 for both L-band data from ALOS PAL-
SAR (Mitchard et al. 2009, Saatchi et al. 2011b) and 
airborne P-band data (Le Toan et al. 2011) from several 
study sites are based on a direct comparison of radar 
measurements and AGB from ground plots. The form 
of the relationship suggests that there is a rapid rise of 
backscatter with biomass for low-biomass plots, and 
then a slower increase to an asymptote value at higher 
biomass values. For L-band, the asymptote may arrive 

at values of about 100 Mg/ha or more depending on 
forest types (Yu & Saatchi 2016), and for P-band, the 
asymptote may reach 300 Mg/ha or higher. Note that 
both the form of the relationship and the asymptote or 
saturation values may change significantly depending 
on the data quality and analysis:

(1) The plot data used for comparison of radar im-
agery are small; therefore, the backscatter pow-
er may be noisy due to the presence of speckle 
noise in radar measurements. The noisy data 
may introduce a false saturation at lower biomass 
values. Large plots >100 m in size will readily im-
prove the relationship.

(2) Geolocation errors in both SAR and ground 
plot locations will introduce noise in the data 
when comparing the ground plots and the radar 
backscatter (Fig. 5.23). Similar to the plot size, 

Figure 5.22 Sensitivity of radar backscatter measurement at L-band and P-band frequencies and HV polarization 
to forest AGB over sites distributed in boreal, temperate, and tropical ecosystems (Shugart et al. 2010).
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the geolocation error can introduce false sat-
uration. The use of larger plots and averaging 
SAR pixels (multi-looking) reduces geolocation 
errors.

(3) Changes in SAR geometry across the plots may 
also introduce noise in the data, impacting 
the relationship and the saturation level of 
the radar-biomass relationship. If the image 
is not corrected radiometrically (RTC) and for 
incidence angle variations, plots with similar 
biomass may have significantly different back-
scatter (Fig. 5.24).

(4) Environmental differences and changes in soil 
moisture on radar backscatter can introduce 
noise in the relationship. Using multitemporal 
SAR imagery will allow averaging out the mois-
ture effects and will improve the backscatter 
values, allowing them to become more stable 
spatially and temporally for biomass estimation 
(Fig. 5.24).

(5) Differences in the time of image acquisition and 
plot data can also introduce noise in the rela-
tionship. If the inventory plots are established 
a long time before or after the SAR acquisition, 
changes in biomass and forest structure from 
both disturbance and recovery during this 
period will influence the SAR backscatter. It is 
recommended that the dates between ground 
and radar acquisitions are minimized. 

5.6.2  RADAR-BIOMASS STATISTICAL 
MODELS

Depending on the wavelength of the measurement, 
the radar backscatter from a forest can be related to 
scattering from live stems, branches, and foliage based 
upon their abundance and moisture content within a 
resolution cell as:

 γpq
0 ∝ fpq ni , Vi , εi( )  ,  (5.3)

where fpq is a function averaged all possible orientation 
and size distributions, p and q represent the transmit 
and received polarizations (H, V), ni represents the 
density of trees, Vi represents the volume of trees, 
and εi represents the moisture or dielectric constant of 
forest components (stems, branches, and leaves). This 
equation symbolically represents the radar backscat-
ter relationship to forest structure and wood density 
that, along with orientation and tree size distributions, 
can be used to generate a model for estimating forest 
volume or biomass. In addition to forest structure and 
biomass, other parameters such as soil moisture and 
surface structure (slope and roughness) impact the 
function. The most important task in radar biomass 
estimation is the development of the model fpq.

The analogy of this model in forestry applications is 
a parametric or regression-type relationship designed 
to directly estimate AGB with respect to forest struc-
ture. Here, some options of statistical models are pro-

vided that are developed by fitting a regression-type 
equation to backscatter relation to AGB. The following 
is the starting point in the analysis of data: 

(1) The radar backscatter is radiometrically corrected 
and normalized for incidence angle (γpq), and is 
converted into the linear unit and not in logarith-
mic scale (dB). To convert radar backscatter to a 
linear unit, 10^(0.1 dB) is used, where dB refers 
to the backscatter value in dB, which is often a 
negative number. 

(2) The plot size is large enough and has good geolo-
cation and shape to match the radar pixels.

(3) Radar backscatter data are from multi-looked 
imagery for large enough pixels with reduced 
speckle noise. 

(4) Plot-level radar backscatter at each polarization 
or for radar vegetation indices are derived from 
averaging pixel-based backscatter at the linear 
unit. 

Here, a statistical model is introduced based on the 
nonlinear combination of radar backscatter for the es-
timation of biomass. Based on previous studies, the re-
gression model is between an unknown power of AGB 
and a linear combination of backscatter measurements 
at three polarizations (Ranson & Sun 1994, Saatchi et 
al. 2007, Saatchi et al. 2011b):

 AGBλ=  a0+a1γHH
0 +a2γHV

0 +a3γVV
0   , (5.4)

Figure 5.24 Radar backscatter and biomass relationship influenced by geometry and environmental conditions: (a) radar backscatter and AGB from ground 
plots acquired over different local incidence angles and different times, (b) correction of radar backscatter for the local incidence angle reducing the noise in 
the data, and (c) multitemporal averaging of backscatter (over five dates) reduce the noise due to environmental factors and moisture and improve the radar-
biomass relationship (data from UAVSAR and ground plots in region of Howland, Maine, U.S.)
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where the unknown coefficients (λ, a0, a1, a2, and a3) 
will be determined statistically by using radar mea-
surements and field data. The above model has the 
advantage of being flexible and can be used either 
for a single polarization, such as γHV

0  (Le Toan et al. 
2011), or multiple polarization. It can also use other 
information such as the interferometric height esti-
mation from radar or any other spectral information 
to improve the prediction of the model. The power λ 
for AGB is designed to adjust for the asymptote in the 
model (Saatchi et al. 2011b). 

There are other options for AGB estimation from 
backscattering coefficients that have been used both 
in temperate and tropical forests (Saatchi et al. 2007):

loglog AGB( )=a0+a1γHH0 +  a2 γHH0( )
2 

  (5.5)

+b1γHV
0 +  b2 γHV

0( )
2
+  c1γVV

0 +  c2 γVV
0( )

2
  

These equations have a larger number of coeffi-
cients to determine but may perform better in ensur-
ing that the asymptote in the radar backscatter-bio-
mass relationship is well-represented in the model. 
Figure 5.25 shows the model fit of Eq. (5.4) for 
L- and P-band data over tropical forest of Costa Rica, 
and Table 5.4 shows the coefficients derived from 
the model fit. 

The power-law relationship defined in Eq. (5.4) is 
the optimum fit to the normalized backscatter data 
with respect to the aboveground dry biomass in all 
cases. At both frequencies, the scale of analysis did 
influence the form of the model between AGB and 
backscatter; however, as the scale of analysis in-
creased from 0.25 to 1.0 ha, the r-squared correlation 
between backscatter and AGB improved, largely due 
to the spatial averaging of the radar data and the re-
duction of speckle noise. The improvement from 0.25 
to 0.5 ha is due to both the reduction in speckle noise 

and the errors due to geolocation and orientation of 
the plots, whereas the improvement from 0.5- to 1.0-
ha plots is mostly due to averaging a larger number of 
pixels, hence the reduction of speckle noise. Although 
all polarizations show similar trends with respect to in-
creasing AGB, there are clear distinctions among them 
in terms of backscatter level and sensitivity to biomass. 
In both frequencies, the HV sensitivity to biomass is 
much higher, and the relationship improves much 
higher than other channels as the scale of measure-
ment increases. However, at L-band, the sensitivity to 
biomass decreases rapidly at 100 Mg ha–1 at 0.25 ha 
and with slightly higher values of 100–150 Mg ha-1 at 
the 1-ha scale. 

The P-band results show a very strong relationship 
to AGB over the entire range with gradual loss of sensi-
tivity at AGB > 200 Mg ha–1. The r-squared correlation 
between P-band channels and AGB is almost above 0.7 
in all cases and improves with the spatial scale. 

Figure 5.25 Model fits for the backscatter relationship with AGB for both L- and P-band at three polarizations of HH, HV, and VV at three different plot sizes 
of 0.25, 0.5, and 1.0 ha (Saatchi et al. 2011b).

L-Band

P-Band
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5.6.3  RADAR-BIOMASS PHYSICALLY BASED 
MODELS

Physically based models are often complex in 
formulation and include a large number of variables 
covering the remote sensing sensor characteris-
tics, the geometry of measurements, and the forest 
characteristics. There are several types of physically 
based models that are used to simulate the radar 
measurements from forest canopies (Saatchi & Mc-
Donald 1997, Saatchi & Moghaddam 2000, Ulaby et 
al. 1990, Sun & Ranson 1995, Karam & Fung 1983, 
Karam et al. 1992, Oh et al. 1992). As discussed pre-
viously, the model is based on formulating the three 
dominant scattering mechanisms or radar backscat-
tering power from vegetation layers. These include 
volume, volume-surface, and surface scattering:

     γ0= γvol
0 + Γsurf γvol−surf

0 + Γvolγsurf
0   , (5.6)

where γvol
0  is the volume backscattering from veg-

etation, γvol−surf
0  is the volume forward scatting from 

vegetation, γsurf
0  is scattering from the soil surface, 

Гvol = exp exp (–B × AGB) is the volume attenuation 
(absorption), and Гsurf is the soil surface reflectivity.

The above equation and terms can be repeated 
for each polarization separately. Here, the model 
fits for only one polarization is represented, and the 

methodology for developing semi-empirical models 
that include the physical formulation is provided. The 
HV polarization typically has better sensitivity to for-
est AGB than the HH or VV polarizations and has less 
sensitivity to the soil surface scattering and moisture. 
Therefore, for demonstration, this chapter focuses on 
the HV polarization. Another focus is on the L-band 
data as it appears to be the widely used data from 
space from the ALOS PALSAR data. However, the 
methodology can work for both L-band and C-band 
over different ranges of biomass depending on the 
sensitivity of each sensor (Fig. 5.26).

In forests where the canopy is not as dense, such 
as the temperate conifers and boreal forests, the 
magnitude, sensitivity to biomass, and the contribu-
tions of each scattering component may be different. 
For example, in boreal forests, L-band backscatter 
can possibly have significant contributions from the 
surface-volume term with potentially enhanced sen-
sitivity to forest biomass and soil moisture (Sandberg 
et al. 2011). This possibility is explored by fitting a 
functional form that includes both volume and the 
volume-surface scattering term: 

 γ0= AWα 1−e−BW( )+ CW β+D( )Se−BW   , (5.7)

where A, B, C, D, α, and β are fitting coefficients, and 
the unknowns are W (as the AGB) and S (as the soil 
surface condition). The term S includes the reflectivity 
of the surface which depends primarily on soil sur-
face moisture. The temperate/boreal mixed conifer 
forest was selected as an example to demonstrate 
the effect of other scattering contributions, as obser-
vations from ALOS PALSAR HV and AGB from ground 
data are available from the site in Howland, Maine 
(Table 5.5). 

After developing the model for the study site, the 
next step is to estimate AGB from the model. The 
biomass estimation process from the model relies 
on a least-squared approach such that the function 
can be inverted to estimate W and S. If the only data 
available are from ALOS PALSAR, which provides du-
al-polarization imagery in HH and HV over most of 
the world, the least-squared method can be readily 
written as: 

 Loss= ηHH fHH W ,St( )−γHV ,t( )⎡
⎣
⎢

⎤
⎦
⎥
2⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫
⎬
⎪⎪⎪

⎭
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n
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  ,

where η = 1 for HH, or 3.5 for HV. The Loss function 
will be minimized in a least-squared approach to es-

RADAR CHANNELS a0 a1 a2 a3

0.25 ha Scale

LHH, LHV, LVV -4.36 -41.68 ± 2.56 45.71 ± 6.05 2.08 ± 2.53

PHH, PHV, PVV -1.23 64.11 ± 6.05 235.41 ± 22.80 119.41 ± 8.73

0.5 ha Scale

LHH, LHV, LVV -1.91 16.49 ± 3.32 63.76 ± 11.28 39.26 ± 3.93

PHH, PHV, PVV -0.31 57.96 ± 6.36 313.29 ± 30.79 81.22 ± 11.07

1.0 ha Scale

LHH, LHV, LVV -0.67 -7.35 ± 4.87 106.63 ± 21.96 48.11 ± 6.72

PHH, PHV, PVV 0.73 42.13 ± 13.49 323.02 ± 64.41 71.51 ± 18.74

Table 5.4 Parameters of the model fit to Eq. (5.4) using airborne radar backscatter at L-band P-band 
with three polarization combination and three spatial scales.

Figure 5.26 Relationship of backscatter in HV 
polarization at three frequencies of C-, L-, and P-band 
based on ground and backscatter data over Howland 
forest in Maine using biomass estimates from 0.1-ha 
plots AIRSAR data from one image. The backscatter 
values are different in magnitude and sensitivity, and 
the fit is based on a logarithmic model.

Aboveground Biomass (Mg/ha)

Ga
m

m
a0

 (m
2 /

m
2 )

Model Parameters A B C D α β

γ 0
HV 0.04  ± 0.01 0.06 ± 0.03 0.04 ± 0.1 0.00001 0.14 ± 0.05 0.019 ± 0.02

Table 5.5 Fitting coefficients and unknowns for a temperate/boreal mixed conifer forest site in Howland, 
Maine.
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timate W and S at each pixel. Note that with multi-
ple SAR imagery acquired at different times t, the 
above equation is used by allowing the soil term S 
to change through time, but W (AGB) remains con-
stant to improve the estimation approach. This as-
sumes that for a period of a season or few months 
to stack multitemporal radar data, AGB remains 
constant or has some undetectable change unless 
a major disturbance occurs.

The above formulation was designed to demon-
strate that a semi-empirical or physically based 
algorithm can be derived for an ecoregion or 
forest type and applied over large areas. This is 
mainly due to the fact that statistical models de-
veloped based on field data over a small region 
may have large errors when applied over areas far 
from the original test area due to potential varia-
tions in landscape topography, soil moisture and 
roughness, and vegetation structure. However, the 

semi-empirical algorithm relies more on the physics 
of the problem and compensates for the landscape 
and regional variation. In a more rigorous implemen-
tation of the problem, the Loss function can also be 
optimized locally by updating the coefficients of the 
model (A, B, C, D) over a local window of pixels (3×3 
or 5×5 or larger) to allow for the model to be better 
adjusted to local variations of the forest structure 
within an ecoregion. 

A simpler version of the physically based algorithm 
has been applied in few cases. Yu and Saatchi (2016) 
use a model that weights more on the volume scat-
tering and combines the surface effect in both vol-
ume-surface interaction and surface scattering as an 
unknown term: 

 γ0= AWα 1−e−BW( )+C   ,  (5.9)

where W is AGB in Mg/ha; and A, B, C, and α are fit-
ting coefficients. The above equation has been used 

to model ALOS PALSAR variations over global vegeta-
tion biomass (Yu & Saatchi 2016). Bouvet et al. (2018) 
used a slightly simpler version of the model that can 
be inverted analytically, though with less flexibility 
for adjusting for the asymptote. In their version, the 
model is fit to the decibel values of the backscattering 
coefficient:

 γ0= A 1−e−BW( )+Ce−BW   . (5.10)

This formulation ignores the volume-surface scat-
tering and only considers the volume and surface scat-
tering. The formulation corresponds to the modified 
Water Cloud Model (Santoro et al. 2002), an adapta-
tion of the original Water Cloud Model (Attema & Ula-
by 1978) that has been widely used for vegetation bio-
mass estimation at higher frequencies such as C-band. 
The above model has already been used for L-band 
data by several authors (Cartus et al. 2012, Mermoz et 
al. 2014, Michelakis et al. 2014, Mitchard et al. 2011).

Figure 5.27 Application of the semi-empirical model on the ALOS PALSAR HH and HV images over Howland, Maine forests and comparison with the lidar-
derived AGB as a reference map. The results shows using multi-temporal ALOS imagery, the SAR estimation of biomass approaches the Lidar estimation. With 
6 ALOS images, over 75% of the image pixels are estimated within 20 Mg/ha of the reference values. The accuracy increases to 86% after using 9 images. 
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5.6.4  RADAR-BIOMASS MODEL VARIATION 
ACROSS GLOBAL FORESTS

Radar-biomass algorithms will vary globally de-
pending on the forest types. In order to provide a 
basic set of algorithms globally for rapid estimation 
of forest biomass in the absence of any reliable 
ground or lidar data, the development of preliminary 
algorithms for global vegetation ecoregions is sum-
marized here. The primary objective of this section 
is to show how many different models can, on the 
average, represent the L-band radar sensitivity or re-
lationship to biomass, starting with several datasets 
to develop the models:

• The radar backscatter data from ALOS/PALSAR, 
from the Japan Aerospace Exploration Agency 
(JAXA). JAXA has released the 2007–2010, 2015, 
2016, and 2017 annual mosaics of ALOS/PALSAR 
data at fine-beam mode and dual polarization 
(HH, HV). The global mosaic is corrected for 
geometric distortion and topographic effects, 
with potentially significant residual distortions 
in areas of high slopes. HH and HV backscatter 
values from the 2007 mosaic have been used 
for this study. To achieve this, the backscatter 
digital numbers (DN) from the PALSAR product 
were converted to values of backscattering coef-
ficient  in units of linear power then 
aggregated to a 50-m resolution using simple 
averaging within a 2-×-2-pixel window. The ALOS 
PALSAR data and instructions for converting the 
DN values to backscatter power are given here.

• The GLAS, onboard the ICESat (2003–2008), 
can be used to make global estimates of forest 
height and vertical structure. In turn, these data 
are used to derive estimates of forest biomass at 
the GLAS effective footprint size of approximately 
50 m (0.25 ha). All GLAS waveform data were fil-
tered depending on the signal-to-noise ratio and 
cloud flag in the GLAS GLA14 dataset to develop 
more than 7 million clean waveforms distributed 
over the global forests. GLAS data can be down-
loaded from the NASA DAAC website.

• Starting with 22 global ecoregions from the WWF 
biome map (Fig. 5.28), these were reduced to 
15 regions that are vegetated and have significant 
structural diversity to affect the radar signature 
(Olson et al. 2001). These data were used as the 
main source for separating the ecoregions glob-
ally. This WWF-derived map is based on a suite 
of datasets such as climate, topography, and sea-
sonality, separating the key global vegetation life-
forms that have distinct structure, landscape, and 
climate features. Additional separation of ecore-
gions across continents was allowed because of 
distinct biogeography and plant distributions, as 
well as other factors including history of climate 
and human impacts. 

The ICESAT GLAS waveform data provide vege-
tation vertical structure and different height met-
rics that were converted to AGB for each waveform 
(Lefsky 2010, Yu & Saatchi 2016). The ALOS PALSAR 
pixel values for HH and HV from the global mosaics 
of 2007 will be, and the associated ecoregions from 

the WWF-based map were extracted for all latitude/
longitude center coordinates of the GLAS footprints. 
Each AGB value was then associated with two ALOS 
polarized backscatter and one ecoregion class from 
WWF map. To demonstrate the relations between 
radar measurements and AGB, the AGB values were 
placed into 5 Mg/ha bins and the corresponding 
backscatter values were averaged. For every bin 
within each forest category, the mean and standard 
deviation of the ALOS-HH and HV backscatter values 
within the bin were calculated. The mid-AGB value 
was used to represent each bin. The extreme end of 
this bin distribution was terminated once the number 
of points within the bin fell below 500. The biomass 
values were also limited to 200–300 Mg/ha, a factor 
of 2–3 beyond the sensitivity limits of the L-band data 
with respect to the biomass to allow for developing 
the backscatter-biomass models and detecting the 
saturation region for each ecoregion (Fig. 5.29).

Using the models developed for HV-polarized 
backscatter for all 22 global ecoregions, a statistical 
F-test to compare the models between two or three 
models depending on each ecoregion using a pair-
wise statistical test was developed based on the 
statistical significance of extra sum-of-the-squares 
F test and the AIC approach. This analysis allows for 
the definition of a p-value to be small enough to give 
criteria necessary to separate statistically and signifi-
cantly different models from other possible models. 
The process was first performed on models with 
similar ecoregions such as boreal forests of the two 
continents and then between the boreal forest mod-

Figure 5.28 Global ecoregions derived from the WWF ecoregion map (Olson, et al. 2001) by separating the ecoregions in different continents. 
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els and other ecoregions. The results of the statistical 
tests provided 15 distinct models across the global 
ecoregions (Fig. 5.30). 

Both of the models in Eqs. (5.7) and (5.9) were 
used to fit the data and both performed well. Here, 
for simplicity and easier application of the model to 
the backscatter for biomass estimation, the coeffi-
cients for the global forests are provided for inter-
ested researchers or practitioners to apply on radar 
imagery to develop the biomass. The next sections 
provide specific instructions for practical implemen-
tation of the algorithms for different regions. 

Note that because of the highly complex nonlinear 
nature of Eqs. (5.7) and (5.9), and the small number 
of fitting data points, the fitted coefficients may have 
large uncertainties for some ecoregions, as shown by 
the one-standard-deviation values of the fitted coef-
ficients. While the more complex functional form of 
Eq. (5.7) may be closer to the physical representation 
of the full backscattering mechanism, caution must 
be taken in using these fitted coefficients to make 
physical interpretations because of the limited num-
ber of observational diversities. It is recommended 
that interested researchers develop more site-spe-
cific and regional models with improved ground or 
lidar data. 

5.6.5  RADAR-BIOMASS NONPARAMETRIC 
MODELS

There are multiple ways of extrapolating samples 
of forest biomass data from ground or lidar measure-
ment to a gridded map. These include parametric 
approaches such as the use of statistical regression 
models and semi-empirical models described previ-
ously that can be applied on individual radar pixels. 
However, maps of biomass have also been developed 
using a set of spatial environmental data from remote 
sensing and climate, and nonparametric approaches 
such as interpolation, co-kriging, classification, color-
ing by numbers, decision rule techniques, and ma-
chine-learning approaches as in the Random Forest 
(Xu et al. 2015), Maximum Entropy (MaxEnt) (Xu et 
al. 2015, Saatchi et al. 2011b), Super Vector Machine 
(Garcia et al. 2017), or Neural Networks (Del Frate & 
Solimini 2004). In some cases, the parametric models 
are not suitable for estimating biomass because the 

models are developed with limited data over small 
regions and are used for large-scale biomass esti-
mation. Factors such as landscape variability, forest 
structure, and variations of moisture and other envi-
ronmental variables impact the applicability of a sim-
ple statistical model developed with limited data in 
and over a relatively non-representative landscape. 
Nonparametric models are found to be more suitable 

in large-scale geospatial and geostatistical analyses 
because they are not affected as much by noise in the 
model or issues associated with multivariate normali-
ty. Nonparametric models can also integrate variables 
with different statistical distributions and provide 
more stable and relevant information. Furthermore, 
forest structure and biomass often exhibit complex, 
nonlinear variations, autocorrelation, and variable in-

Figure 5.29 Sensitivity of L-band HV backscatter to AGB of boreal forests of North America dominated 
by conifers. The sensitivity is high up to 100 Mg/ha and starts declining for AGB >100 Mg/ha.
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Figure 5.30 Distinct L-band HV models for 15 ecoregions globally. The models are derived from binned 
backscatter and AGB data derived from GLAS lidar data. 
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teraction across temporal and spatial scales. In these 
cases, nonparametric approaches often greatly out-
perform the parametric methods. Proposed here are 
nonparametric and machine-learning approaches for 
mapping forest biomass over large areas using SAR 
imagery or fusion with other datasets such as topo-
graphical data from SRTM or even Landsat imagery 
for regional and national-scale biomass mapping for 
the improvement of biomass estimation.

Among nonparametric models, two common ap-
proaches used extensively for large-scale mapping 
were selected (Saatchi et al. 2011, Baccini et al. 2012, 
Xu et al. 2015): the MaxEnt estimation algorithm and 
the Random Forest estimation model. To apply these 
methods, two sets of data are required: 

(1) Training data—the model or machine-learn-
ing training data can be selected from AGB esti-
mated from inventory plot data or lidar measure-
ments. The training data must be widespread 
to cover the range of landscape and biomass 
variations over the region of interest, with the 
number of samples covering the biomass range 
and representative of areas similar or compatible 
with the pixel size of the remote sensing imagery.

(2) Spatial data layers—Here, the spatial layer 
is SAR imagery from any airborne or satellite data 
such as Sentinel and ALOS. However, spatial data 
can be selected from a range of imagery such as 
SRTM to represent the topography or Landsat 
imagery to allow data fusion and improvement 
of estimation. In the case of SAR, the images are 
preferred to be terrain corrected, multi-looked, 
or speckle filtered and projected at the spatial 
scale compatible with the ground plots or lidar 
estimated biomass.

5.6.5.1  MaxEnt Model

MaxEnt is a probability-based algorithm that 
seeks the probability distribution by maximizing the 
information contained in the existing measurements 
(Berger et al. 1996, Phillips et al. 2006). The method 
is used as a classification approach, and each class 
has some probability of occurrence p(Ak), where A is 
a measurement event of the response variable, while 
the measurements are from training samples that be-
long to class k. The following constraint assumes that 

probabilities of all p(Ak) must sum to 1.

 p(Ak )=1
k
∑   .  (5.11)

From information theory, the most uncertain 
probability distribution is the one that maximizes the 
entropy term:

 E=− p Ak( )
k
∑ lnlnp Ak( )  .  (5.12)

This process will ensure that the distribution is 
estimated by keeping the randomness of samples 
for the largest entropy. Equation for E naturally gives 
the maximum value for the entropy when all prob-
abilities are equal (randomness) assuming no other 
constraints are applied to the system except for the 
equation where the sum of the probabilities are 1. If 
additional information is available (i.e., some known 
AGB observations and corresponding measurements 
in X as in ALOS PALSAR or any SAR data; these are 
referred to as the training set), the probability dis-
tributions are “conditioned” on the available obser-
vations:

 p(Ak|X) = pk(X)p0(Ak)/p(X)  . (5.13)

The right part of Eq. (5.13) follows the Bayes’ the-
orem, meaning that the posterior probability p(Ak|X ) 
depends on the distribution of X and equals to the 
product of prior probability p0(Ak) and the proba-
bility distribution pk(X ) that finds X to be in the class 
k, and normalized by the probability distribution of 

X for the entire domain of measurement variables 
(here, satellite images). The maximization of the en-
tropy term in Eq. (5.14) is equivalent to finding the 
probability distribution pk(X ) closest to p(X ), and the 
maximum entropy procedure gives the “raw” output: 
pk
raw (X )= pk (X ) p(X ) (Elith et al. 2011). The prior 

probability p0(Ak) is often unknown, as this quantity 
is the proportion of all observations over the entire 
scene that belongs to class k. Assuming that the train-
ing set is sampled randomly, p0(Ak) can be estimated 
as p0(Ak) = Nk/Ntotal, where Nk is the number of sam-
ples in the training set labeled as class k, and Ntotal is 
the total number of samples in the training set. 

For the interested variable AGB, the numeric val-
ues can be categorized into a set of classes: k1, k2, k3, … 
kn, , where 0 < k1 ≤ AGB1 < k2 ≤ AGB2 < … < kn ≤ AGBmax. 
And each class has a nominal value of AGB—usually 
the mean value of each class AGBk. To predict the AGB 
value for any pixel i with known measurements Xi, it is 
calculated as the expectation of all classes given the 
MaxEnt results retrieved from the training set:

〈AGBi 〉=
p Ak |X i( )⎡
⎣⎢

⎤
⎦⎥
m
p Ak |X i( )AGBkk=1

N∑

p Ak |X i( )⎡
⎣⎢

⎤
⎦⎥
m

k=1
N∑

  .  (5.14)

Empirical tests have found that the model per-
forms better by assigning higher weights to more 
probable classes. Therefore, an extra exponential 

GLOBAL VEGETATION TYPE A B C α

Africa Tropical Moist 0.056492 0.064689 0 0.038247

Asia Tropical Moist 0.045409 0.060518 0 0.060518

America Tropical Moist 0.040546 0.068784 0 0.098841

Temperate Conifer 0.0092565 0.057336 0.04 0.27162

Temperate Broadleaf/Mixed 0.041469 0.034296 0.026406 0.012282

Tropical Shrubland 0.016429 0.11013 0 0.2675

Tropical Dry Broadleaf 0.021563 0.042324 0.027519 0.1117

North America Boreal 0.018911 0.019744 0.029106 0.15723

Eurasia Boreal 0.0091605 0.038506 0.04 0.26141

Fresh Water Flooded 0.047845 0.045581 0.022164 0.0058592

Saline Water Flooded 0.013682 0.051846 0.02192 0.21116

Table 5.6 Proposed coefficients for simple ALOS PALSAR HV-based model as in Eq. (5.9) for several 
global ecoregions as examples for rapid estimation of forest biomass.
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parameter is added to the raw output in the above 
equation that is determined to be approximately 3 
(Saatchi et al. 2011a)

5.6.5.2  Random Forest Model

The Random Forest model is an ensemble mod-
el of decision trees trained from randomly selected 
subset features and random sampling of the training 
set using the bagging method (Breiman 2001). Ran-
dom Forest can be a regression method when using 
regression trees, and for the jth regression tree, the 
regression model can be built as 

 AGB = fj(x) + ε  , (5.15)

where x, ε, and X are the bagged samples of the 
training set, and fj(•) is the nonparametric function 
determined by the jth regression tree. The final pre-
diction of Random Forest regression is the unweight-
ed average of the collection of trees:

 AGB! (X )= 1
J

f j (x )
j=1

J

∑   . (5.16)

This averaging process inevitably creates results 
biased towards the sample mean, and large/small 
values of AGB are often underestimated/overesti-
mated. Various bias correction methods have been 
proposed to post-Random Forest results. Intro-
duced here is a simple regression method on the 
Random Forest RF prediction to correct the biases, 
so that every 5 percentiles of the training data are 
grouped to have its own bias correction:

AGB=α+βAGB!(X )+ γm
m=1

M
∑ (AGB!(X )−bm )Dm+ ε  .  (5.17)

Here, the results of Random Forest prediction 
AGB! (X ) are further compared with the true AGB in 
the training set using segmented regression. Pa-
rameters α, β, and γm are all regression coefficients, 
bm is the location of break points for the 5-percen-
tile, 10-percentile, …, and 95-percentile of AGB in 
the training set, and Dm is the dummy variable that 
equals to 1 when , and 0 otherwise. The 
bias-corrected Random Forest prediction is shown 
to have less underestimation of high AGB, which is 
important for biomass and carbon estimations. 

To evaluate the performance of the ma-
chine-learning algorithms, recommend three statis-
tical measures are recommended: (1) the coefficient 
of determination (R2), (2) the Root-Mean-Square 

Error (RMSE), and (3) the Mean Signed Deviation 
(MSD). Once all of these measures are applied to 
an independent test set where the original AGB is 
obtained from ground data or airborne lidar, while 
the predicted AGB is derived using the SAR and other 
remote sensing data layers and the model trained 
from the training set. In addition, it is recommended 
to use the Moran’s I statistics to quantify the spatial 
autocorrelation in the data. The local Moran’s I index 
confirms the need to select more spatial samples in 
heterogeneous areas like forests, as it can identify 
spatial clusters and outliers (see Xu et al. 2015, Xu 
et al. 2017). 

5.6.6  PRACTICAL CONSIDERATION FOR SAR 
BIOMASS ESTIMATION

The following is recommended for practical use 
of SAR imagery for biomass estimation:

(1) Choice of SAR data—Depending on the 
vegetation type and the scale of analysis and 
biomass range, the choice of radar data may be 
different. For all areas covered with low-vege-
tation biomass such as grasslands, shrublands, 
sparse woodlands, young secondary regener-
ation, and low-density wetlands, the C-band 
data from the Sentinel satellites are the most 
suitable datasets. If airborne SAR data are 
available for the study site, use of polarimetric 
C-band data at high spatial resolution is recom-
mended. From low to moderately high biomass 
up to 100–150 Mg/ha, the use of L-band po-
larimetric or dual-pol data are recommended. 
ALOS-2 PALSAR imagery is the most suitable 
dataset because of its frequent observation 
(every 14 days), resolution (~20 m), and sensi-
tivity to biomass. For all forests >150 Mg/ha of 
biomass, use of P-band data that are currently 
mainly from limited airborne sensors are rec-
ommended. P-band data can be used for esti-
mating and monitoring tropical forest biomass.

(2) InSAR observations—Although, the sub-
ject was not covered in this chapter, the use 
of Interferometric SAR (InSAR) for measuring 
the forest structure across some vertical depth 
may help with improving the biomass estima-
tion particularly beyond the saturation level 

in some forests. Unfortunately, reliable InSAR 
data are not readily available. The future Bio-
mass mission (and to some extent the NISAR 
mission) may provide some InSAR data. How-
ever, the use of Sentinel, ALOS, and Terra-X 
SAR data have been used in InSAR models in 
different studies to explore the use of vertical 
structure derived from radar for biomass esti-
mation. 

(3) Multitemporal observations—Due to 
the sensitivity of radar imagery to soil mois-
ture, and to some extent variations of vege-
tation moisture seasonality, the use of time 
series images for reducing the effect of envi-
ronmental factors for biomass estimation is 
recommended. The SAR biomass model often 
performs poorly if it is developed based on 
one SAR image and applied on an image ac-
quired at a different season or date. One prac-
tical approach is to collect as many SAR images 
over the study areas as possible and average 
the data temporally to reduce the effect of 
the moisture before developing the model as 
shown in Figure 5.25.

(4) Map unit and pixel size—Choose map 
units of 100 m or more for improved results 
from the biomass estimation. It is recommend-
ed that SAR biomass models are developed 
with plots of at least 1 ha in size for a relatively 
unbiased estimate of the biomass within the 
range of biomass allowed for the SAR data. If 
reliable models are developed at smaller pix-
els or plot sizes (e.g., 0.25 ha) for some forest 
types (dry forests, woodlands, boreal), it is 
recommended to estimate the biomass at 0.25 
ha and aggregate the result to 1 ha or more for 
applications. The error of biomass estimation 
will reduce with a factor of slightly less than n
, where n is the number of pixels for averaging 
(Weisbin et al. 2014). 

(5) SAR measurement diversity—Most 
models shown in this section were based on 
L-band HV backscatter measurements due to 
its improved sensitivity to biomass and moder-
ate effects of moisture or other environmental 
factors. However, use of models that include 
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several polarizations or even measurements 
of two or three frequencies improve the model 
performance and the accuracy of the biomass 
estimation. In most practical studies, access 
to some ALOS PALSAR and Sentinel satellite 
imagery is possible. Combining the datasets in 
a statistical model as shown in this section can 
improve the accuracy of the biomass across dif-
ferent ranges. 

5.7  Uncertainty Analysis
Uncertainty analysis has become an important 

ingredient of forest biomass estimation from both 
ground and remote sensing data due to Intergovern-
mental Panel on Climate Change (IPCC) guidelines 
(IPCC 2006). This section provides a summary of 
different types of uncertainty analysis from simple to 
more complex inferences of mean or total biomass 
(carbon stocks) of forests at regional or national 
scales. According to the IPCC (Chapter 3) and the 
Carbon Fund Methodological Framework, all forest 
biomass and carbon assessments at the project, 
jurisdictional, and national levels must address the 
uncertainty related to the biomass estimation and all 
derived products such as emissions from deforesta-
tion and degradation by:

(1) Identifying and assessing sources of uncertainty
(2) Minimizing uncertainty where feasible and cost 

effective
(3) Quantifying remaining uncertainty

The sources of uncertainty are identified in both 
the land-use or activity data and the biomass esti-
mations for different land use and land cover classes 
and emission factors. Once the sources are identified, 
their relative contribution to the overall uncertainty 
of the biomass estimation at the regional for land 
cover types and hence emissions and removals can 
be quantified and reported. Here, the uncertainty 
analysis is summarized in three steps: (1) Cross Val-
idation (CV) approach for developing uncertainty for 
SAR-biomass models and local area estimation of 
biomass when ground or reference data are avail-
able, (2) error propagation approach showing how 
uncertainty from different sources of errors can be 
combined to provide total uncertainty on the biomass 
estimation at the biomass map units or on the aver-

age for a region, and (3) inference of forest biomass 
at regional scales by calculating both the mean and 
the variance or uncertainty around the mean using 
uncertainty of sources of errors and spatial correla-
tion of map units or derived biomass pixels. 

5.7.1  CROSS VALIDATION

Cross validation is a modeling technique used to 
check the statistical learning consistency with inde-
pendent data from the training set itself. Not only can 
it be used to check the performance of the SAR bio-
mass model or spatial modeling by making predic-
tions on new data that are never used in the training, 
but it is also often used as a technique of parameter 
tuning to avoid “overfitting.” For regression-based 
analysis, the mean-squared-error (MSE) is normal-
ly used as the scoring parameter in the CV process. 
There are several ways of cross validation commonly 
used to evaluate the performance, including k-fold 
approach, leave-one-out CV, repeated random sub-
sampling (or Monte Carlo CV), and so on. Interested 
readers can consult several references for the use of 
validation approaches for quantitative remote sens-
ing products (Browne 2000, Hawkins et al. 2003, 
Arlot & Celisse 2010).

5.7.2 ERROR PROPAGATION

The overall sources of uncertainty for estimating 
forest biomass from SAR or any remote sensing data 
can be summarized as follows:

• Measurement Errors—This error can be 
either random or systematic and results from 
errors in measuring, recording, and transmitting 
the information.

 – In ground data, there are several sources of the 
error that can impact the biomass estimation at 
the plot level (Chave et al. 2005). In addition, 
in measurements of trees, the size and location 
of the plot can introduce significant errors in 
biomass estimation as a reference data to be 
compared to the SAR measurement. 
 – SAR measurements also may have errors asso-
ciated with the absolute calibration of the sys-
tem, the RTC method for removing topography 
and incidence angle effects, and geolocation 
of pixels when using the data to compare with 

ground plots. Together these effects can cause 
bias and random errors in estimation of emis-
sions. Discussion has already been presented 
as how to improve the errors associated with 
the SAR data processing and radiometric cor-
rections.

• Statistical and Sampling Errors—To de-
velop models of SAR backscatter with ground 
reference data or airborne lidar-derived biomass 
may also have errors associated with the sampling 
and the statistical representation of the plots and 
pixels. In general, plot data need to represent the 
landscape variations of biomass from low to high 
biomass and must follow the requirements of the 
size, orientation, and geolocation and number of 
samples. 

• Lack of representativeness of data—This 
source of uncertainty is associated with a lack of 
complete correspondence between ground and 
SAR data. In addition, to develop the SAR bio-
mass models, the pixels must be spatially repre-
sentative in the SAR image and not all are from a 
certain incidence angle, at a certain elevation and 
slope in order to make sure that the relationship 
developed between the SAR data and ground 
are representative. Any errors in sample size and 
sampling characteristics can introduce both sys-
tematic and random errors.

• Models—Models developed from SAR data 
and biomass often have uncertainty due to both 
the choice of the model function and the fit of the 
model parameters. If data are noisy, the model 
fits may have large errors that include both the 
systematic (choice of wrong model equation) and 
random errors. 

• Statistical Random Error—This source of 
error often appears in inventory data that are 
supposed to be a random sample of a finite size 
depending on the variance of the population. 
Here, the sample size is a key source of uncer-
tainty.

• Misclassification and missing data—
This uncertainty is due to incomplete, unclear, or 
faulty definition of data, and allometric models 
leading to bias in estimation of biomass. This will 
often occur when working with the ground plots. 

https://www.forestcarbonpartnership.org/carbon-fund-methodological-framework
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For example, using biomass data from plots 
with different type of measurements, lack of 
availability of allometric models to estimate 
biomass (e.g., allometry for tropical wetland 
forests).

• Missing data—This uncertainty may result 
when measurements are below the detection 
limit causing a nondetected data that can, in 
turn, introduce both bias and random errors. 
By assuming that there are several sources 
of errors that introduce uncertainty in the 
pixel-level estimation of biomass, the total 
uncertainty associated with estimating AGB at 
the pixel level can be calculated by assuming 
all errors are independent and random, by 
using

   εAGB = εmeasure
2 +εmodel

2 +εsampling
2 +εprediction

2   , (5.18)

where each of the terms are the relative errors 
at that pixel scale. Using the above equation, the 
errors at the pixel level will be propagated and a 
map of the uncertainty at the pixel level will be cre-
ated. The main requirement for a pixel-level map 
of uncertainty is to be able to have a pixel-level 
prediction error from the model. The prediction 
error for SAR estimation of biomass at the pixel 
level is often developed through a boot-strapping 
approach where the model errors are simulated to 
generate different predictions for the pixel scale 
AGB and to produce the mean and use the variance 
as the prediction uncertainty or error.

5.7.3  REGIONAL INFERENCE OF BIOMASS

The goal of regional estimate of biomass and for-
est carbon stocks is to be able to develop emission 
factors for calculating emissions and removals from 
different types of human-induced disturbances in 
the forest such as deforestation, degradation, re-
generation, or agroforestry. The problem then is to 
be able to use the estimates of biomass at the map 
units (pixel scale) from SAR data to estimate the 
mean and variance (uncertainty) of the biomass at 
large scales. The mean is estimated by the average 
of the biomass of all pixels for a region. However, 
for estimating the variance several components of 
errors must be included in the calculation, such as 
the errors associated with the spatial correlation of 

biomass estimates at the pixel level.

5.7.3.1  Spatial Autocorrelation

To demonstrate the existence of spatial autocor-
relations among the biomass estimates at the pixel 
level, the use of semivariogram analysis (Isaaks & Sri-
vastava 1990) is recommended. The variogram-based 
approaches assume that the spatial autocorrelation 
of variables only depends on the distance h, while it 
has no other directional or locational dependence. 
The variogram γ(h) is defined as

 γ(h)= 1
2
E y xi

− y x j

⎛

⎝
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  , (5.19)

where ||(xi – xj)||= h and C(h) is the covariagram 
depending on the distance h. In addition to above 
uncertainty at the pixel scale, to calculate the uncer-
tainty at the regional level for forest biomass, the spa-
tial correlation of the errors at the pixel level much 
be considered. The spatial correlation derived from 
semivariogram analysis will provide the variance to 
the estimate of the error using the following model 

(see VT0005) (Weisbin et al. 2014). 

σL
2=P−1 1

m
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2 +2 p(d )σuiσuj

j<i
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and

 ρ(d )=exp −d
cr

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
  ,  (5.21)

where
• P = 1 (representing the size of the pixel as 1 ha)
• i, j are the generic indices representing pixels in 

the biomass map
• n is the number of pixels within each LULC or 

stratum
• r is the range from semivariogram estimating the 

spatial correlation of errors associated with the 
AGB pixel level errors

• c is the parameter of fit for exponential spatial 
correlation function derived from semivariogram 
analysis. c = 1/3 is the default value (Chilès & Del-
finer 2012) (unitless)

• d is the distance between pixels i and j within m 
(pixels)

Figure 5.31 Schematic showing the main sources of uncertainty in SAR estimation of AGB and the 
process of error propagation for total uncertainty assessment.
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• p(d) is the spatial correlation function in terms of 
distance d based on exponential semivariogram 
model (unitless)

• σL
2 is the variance derived from a priori RS data, 

a pilot study, or default values of AGB density for 
the LULC class

• m is a dummy large number representing pixels 
in the map for each LULC. The number can be 
arbitrarily large or at least twice the default value 
of range r

• σui , j
2  is the estimated variance associated with 

AGB values for each 1-ha pixel of the map
By assuming a pixel level uncertainty that is derived 

from the boot-strapping approach of SAR-biomass re-
lationship or from the machine-learning algorithm of 
(σε) at each pixel, the uncertainty of the mean biomass 
at the regional scale can be evaluated using:
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where N is the total number of pixels, σε, σf, and σz are 
the pixel-level errors from (1) spatial mapping uncer-
tainty, (2) allometric equation uncertainty, and (3) un-
certainty of predictor variables from SAR backscatter, 
respectively. The three sources of errors are assumed 
independent, so that the overall uncertainty of regional 
estimates comes from the three covariance terms.

The first covariance using spatial autocorrelation is 
modelled
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where ρij is the correlation coefficient between pixels i 
and j, and it can be approximated from the variogram 
(Eq. (5.19)) normalized C(h) under the assumption that 
spatial autocorrelation only changes with distance h. 

The second covariance is related only to the allome-

tric model coefficients and can be reformulated as
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where gp=
1
N i=1

N
∑

∂ f
∂φp

 is the mean of first deriva-
tive with respect to the allometric model coefficient 
фp, and m is the total number of coefficients in the 
allometric model—or in lidar-AGB model, m equals 
to 2. In the case that the biomass values used to cal-
ibrate the SAR data are from ground plots and not 
the lidar-AGB model, one can assume a certain fixed 
value as the uncertainty of the biomass from the tree 
allometry (Chave et al. 2014, Chave et al. 2005), or 
assume the value is 0. 

The third covariance is related to the measure-
ment errors. In the case of the lidar-AGB model, σz 
is the error associated lidar mean canopy height. 
Without in-situ validation of height measurements, it 
is impossible to evaluate this type of error. Discus-
sion in the main paper has shown that at least the 
model-based height interpolation is very accurate 
and the error in 1-ha resolution is negligible. In the 
case of SAR, this error may be related to backscatter 
error associated with the radiometric calibration. This 
uncertainty can be a fixed value (1 dB for all pixels) 
or a value that varies depending on the SAR range 
and azimuth or the local incidence angle as a result of 
the terrain topographical complexity. Calculating the 
measurement errors of terrain-corrected SAR back-
scatter may be difficult and beyond the scope of this 
chapter. Therefore, the use of a calibration error rec-
ommended by the SAR processing team or available 
in the literature is recommended. For further read-
ings on the uncertainty of inference of biomass at the 
regional level see McRoberts et al. (2017), Ene et al. 
(2017), Naesset et al. (2016), and Xu et al. (2017).

5.7.4  PRACTICAL CONSIDERATION FOR 
UNCERTAINTY CALCULATION

For validation of SAR-derived biomass maps, 
methodologies that can help improve the uncertainty 

estimates or reduce the uncertainty are identified as 
part of the IPCC good practice guidelines. The bio-
mass map can be distributed to the community to be 
used for land use planning, REDD+ projects, and the 
Emission Reduction (ER) programs; and in all applica-
tions, formal uncertainty assessments are required. 
Regional evaluation of the map can be performed 
by using inventory plots or airborne lidar data and 
site-specific lidar biomass allometry that together 
allow the estimation of the potential bias and the 
evaluation of the spatial consistency of the map. The 
methodology to develop regional estimates of forest 
biomass must follow one of the many standard pro-
tocols established by forest inventory techniques or 
the IPCC guidelines. For lidar sampling, a certified 
methodology that can be used for regional forest 
biomass estimation has already been developed. 
The methodology was developed by Sassan Saatchi 
and recently developed as a VCS tool with the collab-
oration of Terra Global Capital as VT0005 (see the 
attached appendix). At the time of releasing the map, 
ground data was too limited to have a comprehensive 
evaluation of the map regionally or locally. Here, a 
set of protocols is recommended for those who are 
interested in evaluating the map further at the local 
or regional scale. 

• The biomass map derived from SAR is considered 
to have both systematic and random errors. The 
uncertainty of the map depends strongly on the 
input biomass data used for training and eval-
uating the results. Any errors in ground-based 
allometry and the lidar derived biomass as ref-
erence can impact the estimation and the map’s 
accuracy. 

• The biomass estimates in the map can be read-
ily updated and improved when more data 
becomes available. Increasing the number of 
ground-estimated forest biomass, use of forest 
specific models, use of multitemporal SAR im-
ages for biomass estimation are critical steps to 
improve the accuracy of the map. 

• For evaluating the map at regional scales (>10,000 
ha), samples of lidar and plot data can be used. 
Any plots that are designed statistically to esti-
mate the mean biomass with a high confidence 
interval (90%) can be used to compare with the 
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map pixel values. At the scale of parks, conces-
sions, and communities, the biomass map can be 
used along with any land cover map to develop 
mean biomass density and can be compared 
with independent inventory data available for the 
same region. 

• The map can also be evaluated at the pixel scale 
(e.g., 1 ha). However, for the comparison, the fol-
lowing precautions must be considered:

 – The plots have to be a minimum of 1 ha or larg-
er. Using smaller plots is not recommended, as 
the biomass of the forest is extremely hetero-
geneous, particularly at scales of less than 1 ha. 
 – The 1-ha plots chosen for comparison with 
the map have to be aligned with the map pixel 
orientation. Any plots with different orientation 
may have large uncertainty when compared to 
the map because of the variations of the bio-
mass at the 1-ha scale.
 – The map also includes an uncertainty num-
ber associated with the biomass of each 
pixel. Any comparison with the pixel value 
biomass should consider the error provided 
for the pixel. 
 – The number of plots must be larger than a few. 
Comparison only makes sense when it is statis-
tically designed. Using one or a few plots will 
not provide any realistic and fair comparison of 
the map. It is recommended that at least 20–30 
plots be used in statistically evaluating the map 
and comparing the results with the uncertainty 
provided. 

5.8  Future Biomass 
Missions
5.8.1  GEDI (LAUNCH 2018–2019)

The scientific goal of GEDI is to characterize the ef-
fects of changing climate and land use on ecosystem 
structure and dynamics to enable improved quantifi-
cation and understanding of the Earth’s carbon cycle 
and biodiversity. Focused on tropical and temperate 
forests from its vantage point on the International 
Space Station (ISS), GEDI uses a lidar sensor (near 
infrared 1,064-nm wavelength) to provide the first 
global, high-resolution (25 m) sampling observations 

of forest vertical structure. GEDI addresses three core 
science questions: (1) What is the aboveground car-
bon balance of the land surface? (2) What role will 
the land surface play in mitigating atmospheric CO2 
in the coming decades? (3) How does ecosystem 
structure affect habitat quality and biodiversity? An-
swering these questions is critical for understand-
ing the future path of global climate change and the 
Earth’s biodiversity.

GEDI informs these science questions by collect-
ing ~12 billion cloud-free land-surface lidar wave-
form (vertical profile) observations over a two-year 

Figure 5.32 Methodology to evaluate the forest biomass map locally or at the pixel level using field 
inventory plots. For local evaluation, inventory plots must follow a statistical design to allow accurate 
mean AGB values. For pixel-level evaluation, plots must be equal to or larger than the pixel and must 
be oriented to maximize the overlay of the best spatial match between the pixel and the plot biomass.

Regional mean level validation

Plot level validation

Figure 5.33 Distribution of GEDI footprints across the landscape from the three lasers and multiple 
beams (left panel) and the typical distribution of forest vertical structure captured by the GEDI footprint 
level waveforms.
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mission lifetime. The instrument uses three laser 
transmitters split into five beams that are dithered to 
produce 10 parallel ground tracks of 25-m footprints 
(Fig. 5.33). GEDI will produce estimates of canopy 
height, elevation, and vertical canopy profile mea-
surements. The 25-m (~0.0625 ha) footprint mea-
surements are used to model AGB and then used to 
derive mean AGB and variance on a 1-km grid.

5.8.1.1  GEDI CAL/VAL Requirements 

From its vantage point on the ISS, GEDI is focused 
on tropical and temperate forests between 51.5°S 

25m laser footprint
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and 51.5°N. The GEDI biomass calibration strategy is 
to develop globally representative pre-launch mod-
els for footprint AGB using near-coincident airborne 
laser scanning (ALS) data and plot inventory data. 
Mean and standard error of AGB for 1-km grid cells 
are then estimated from the modelled footprint AGB 
via statistical inference. The baseline requirement 
for GEDI is that the standard error of AGB estimates 
within 80% of Level 4B gridded product at 1-km cells 
will be <20 Mg ha–1 or 20%, whichever is greater. 
The GEDI science products are developed using a se-
ries of airborne lidar and ground plots globally and 
models to estimate biomass from GEDI waveforms. 
These datasets are sampled globally to be represen-
tative of major forest types.

5.8.2  NISAR MISSION (LAUNCH 2021)

NISAR is a joint project between NASA and ISRO 
to co-develop and launch the first dual-frequency 
SAR satellite. NASA will provide the L-band (24-
cm wavelength), and ISRO will provide the S-band 
(12-cm wavelength). The mission will acquire po-
larimetric and interferometric observations at an 
unprecedented coverage in space and time, which 
is optimized for studying changes of the global Earth 
surface.

NISAR will focus on the most dynamic ecosystems 
such as disturbed and recovering forests, inundat-
ed wetlands, and croplands. NISAR will measure 
aboveground woody vegetation biomass and its dis-
turbance and recovery globally at the hectare scale; 
biomass accuracy shall be 20 Mg/ha or better for ar-
eas of woody biomass ≤100 Mg/ha over at least 80% 
of these areas. Therefore, the mission will focus on 
areas of low biomass, covering a significant portion 
of boreal, temperate, and savanna woodlands. It will 
provide seasonal to annual observations of biomass 
change in the most dynamic forests impacted by AGB 
disturbance and recovery. The NISAR mission will be 
able to provide L-band dual pol (HH, HV) observa-
tions every 12 days in ascending and descending 
orbits covering global forests every 6 days. These 
observations will be used to produce maps of the 
distribution of forest biomass at 1-ha grid cells. The 
NISAR radar is designed for global InSAR measure-
ments, but the science products produced do not 

include direct information on the vertical structure 
of forests. Rather, AGB is estimated from backscatter 
measurements and exploits either empirical statisti-
cal approaches or inversion of physically-based scat-
tering models that must be calibrated over study sites 
globally to capture the structural and composition 
differences of forests in different ecoregions. 

The NISAR algorithm is based on an analytical 
semi-empirical model with coefficients that are cal-
ibrated with structure and biomass information from 
ground measurements. The forest inventory data 
available in a network of calibration plots distribut-
ed globally in different ecoregions (15 ecoregions as 
discussed in Sec. 5.6) and accompanied by airborne 
lidar observations to extend the ground observations 
and enable validation of the spatial variations of AGB. 
The size of plots used for calibration of the NISAR al-
gorithm must be either >1 ha if used directly with the 
SAR data or smaller (~0.25 ha) if used in conjunction 
with the ALS observations. In addition, forest inven-
tory data can be used to evaluate and report the 

Figure 5.34 Schematic showing a typical northern conifer forest (a) simulated to an ensemble of trees 
with stems, branches, and leaves (b) exposed to L-band radar energy with dominant scattering from 
forest components, (c) suggesting the combined influence of structure and soil moisture on radar 
backscatter with reduced sensitivity to biomass at higher AGB values. The last panel (d) shows the 
sensitivity of radar backscatter at L-band HV polarization showing the sensitivity to biomass values < 
100 Mg/ha with sample data from the entire northern coniferous forests (Yu & Saatchi 2016). 
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uncertainty of NISAR AGB at the national or regional 
scale and for carbon accounting and assessments. 

5.8.3  BIOMASS (LAUNCH: 2022)

Biomass, the ESA’s seventh Earth Explorer mission 
will be launched in the 2020–2021 timeframe and 
has the aim of providing crucial information about 
the state of the forests and how they are changing 
globally. The mission goal is to provide estimates of 
height and AGB in the world’s forests. The science 
case on which Biomass was selected is based on 
its ability to provide estimates of AGB within dense 
tropical forests to monitor their storage and changes 
from disturbance at seasonal and annual frequency. 
The requirement for the Biomass mission is to esti-
mate forest biomass with an accuracy of ≤20% for 
more than 67% of areas with biomass >50 Mg/ha 
on a 4-ha spatial grid cell (200-m x 200-m pixels) 
every six months for a period of five years of the mis-
sion duration. This requirement is achieved by using 
a P-band (70 cm wavelength) SAR sensor, because 

https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/ISRO
https://en.wikipedia.org/wiki/S-band
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of its unique capabilities to penetrate even dense 
tropical forest. The measurements will provide radar 
polarimetric backscatter (HH, HV, VH, VV) and inter-
ferometric observation with PolInSAR capability for 
forest height estimation and TomoSAR capability for 
backscatter vertical profile measurements.

In addition, the Biomass mission will provide 
global maps of forest height at the same 4-ha spa-
tial scale for all forests >10-m height with 30% ac-
curacy and include a 50-x-50-m deforestation map 
globally every six months. These measurements 
together, will significantly improve the ability to re-
duce the uncertainty in the global carbon cycle by 
providing spatially refined and temporally frequent 
observation of carbon fluxes in forest ecosystems. 

The coverage of Biomass is global with a restric-
tion, imposed by the U.S. Department of Defense 
Space Objects Tracking Radar (SOTR) stations, over 
Europe and the North and Central Americas. Under 
these restrictions, only 3% of AGB carbon stock cov-
erage is lost in the tropical forest biome, which con-
stituted 66% of global AGB carbon stocks in 2005. 
The loss is more significant in the temperate (72%), 
boreal (37%), and subtropical (29%) biomes. The 
calibration/validation (CAL/VAL) requirements of 
Biomass are primarily focused in tropical forest 
ecosystems, where the bulk of mission observations 
are located. The biomass and structure algorithms 
require large ground plots (>4 ha) or lidar-derived 
AGB estimates from airborne observations. These 
measurements must represent the variations of 
tropical forest structural types and allometric char-
acteristics and must be repeated during the mis-
sion to allow validation of both biomass stocks and 
changes from disturbance and recovery. 

5.8.4  CROSS-MISSION SYNERGISM 

All three missions have significant overlaps in 
science objectives and products but focus on dif-
ferent observations, covering different regions, and 
retrieving different components of AGB at different 
spatial and temporal scales. The cross-mission syn-
ergism is based on the following observations and 
assessments from the breakout sessions:

• Area coverage and the science products 
from the space missions are immediately rec-

Figure 5.35 Biomass mission P-band SAR measurements showing the configuration of space 
measurements and the sensitivity of backscatter power and interferometry to forest structure. 
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ognized as complementary such that without the 
data from all the missions, wall-to-wall cover-
age, and estimation of the global forest biomass 
are impossible. Biomass focuses on tropical and 
subtropical woodlands at 4 ha, while NISAR is 
global but limited to areas of low forest biomass 
at 1 ha, and GEDI not limited by AGB, but with 
limited coverage collecting sample footprints 
within ±50 degrees latitude.

• Differences in biomass components 
retrieved by each space mission suggest that a 
synergistic global AGB product cannot be mech-
anistically produced by combining the maps, 
but rather requires a systematic data fusion 
approach. For reference, BIOMASS will esti-
mate AGB when woody biomass is > 50 Mg/ha, 
NISAR will estimate AGB  when woody and leafy 
biomass is < 100 Mg/ha, and GEDI will estimate 
AGB for the entire range from height measure-
ments within each 25 m footprint.

• Leverage the sensitivities of each mea-
surement approach to cross-calibrate 
space mission products can be achieved by 
using the measurements and products of one 
mission to CAL/VAL the algorithm or products 
of other missions. Although every space mission 
has a different method for estimating AGB, thus 
making it difficult to directly compare between 
products, an approach could be used that 
compares either similar lower level products or 
leverages different algorithm sensitivities (e.g., 
NISAR can provide more robust estimates for 
forests with 20 Mg/ha than for grasslands with 
≤5 Mg/ha). For example, GEDI forest height may 
be used to develop and verify algorithms for the 
Biomass tomography-derived tree height. Simi-
larly, height or backscatter products from NISAR 
and Biomass missions can provide information 
on the spatial variability of forest structure and 
biomass to improve the algorithm and resolu-
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tion of GEDI height and biomass gridded prod-
ucts.

• NISAR and Biomass measurements 
spatially overlap, thus enabling data fu-
sions such as (1) the combined measurements 
of L-band P-band for improving the estimates 
of low-biomass forests, (2) the use of higher 
temporal frequency NISAR observations to re-
duce the effects of soil moisture and vegetation 

phenology on the BIOMASS estimation ap-
proach, (3) the deployment of a two-frequency 
algorithm to enable estimation of leaf, branch, 
and stem biomass, and (4) the use of combined 
measurements to increase sensitivity of the ob-
servations for detecting low-impact forest deg-
radation and slow recovery.

• Additional ecological science products 
may be produced from synergistic integration 

of data that enables exploration of the physical 
characteristics of each measurement. For exam-
ple, other forest variables such as basal area, 
volume, branch, leaf, and stem biomass, and 
forest stand wood density may be derived using 
the combined sensitivity of radar observations 
to dielectric constants and tree stem and crown 
volumes, and ability of lidar waveforms to mea-
sure the vertical distributions and canopy gaps. 

Table 5.7 Overall characteristics of the NASA and ESA missions to quantify the global forest structure and biomass that can be used to develop synergistic 
biomass products 

MISSION Measurement Product Area Coverage Grid Cell Accuracy Pre-launch 
Cal/Val Mission Cal/Val needs Post-launch 

Cal/Val Sites

GEDI

Height Height Metrics 50 deg. Latitude 25m footprint; 
500m grid

~1m (canopy top 
footprint level)

ALS & LVIS flights RT 
modeling

LVIS samples 
globally

No validation 
requirement

International; 
crowd-sourced

Waveform
Aboveground 

biomass 
(entire range)

50 deg. Latitude 25m footprint; 
1 km grid

20 Mg or 20% at 
1km, 80% px std. 

err.; mission

Footprint 
calibration equa-
tions; sampling 

simulations, ALS & 
LVIS flights

ALS-derived bio-
mass from ground 
plot at 1 km grids

No validation 
requirement

NFI data supersites 
with ALS-derived 
biomass > 100 ha

BIOMASS

HH, HV, VH, VV 
Backscatter

Aboveground 
biomass 

(entire range)

Global (excluding 
North/Central 

America, Europe)
200 m (4 ha)

20% or 10 Mg/ha 
for biomass < 50 
Mg/ha annual

Combined radar 
backscatter and To-
moSAR & POLinSAR 

algorithm

Plots > 4 ha & ALS; 
across ecoregions

NFI & regional 
samples NFI data CTFS; 

ForestGeo
ALS & plots > 4 ha

POLinSAR Forest Height
Global (excluding 

North/Central 
America, Europe)

200 m (4 ha) 20% of total height POLinSAR height 
algorithm

ALS & LVIS data 
distributed across 

ecoregions

Same approach as 
pre-launch

Distributed large 
plots

TomoSAR Vertical 
Profile TBD

Global (excluding 
North/Central 

America, Europe)
200 m (4 ha) TBD TomoSAR vertical 

structure

ALS & LVIS data 
distributed across 

ecoregions

Same approach as 
pre-launch ALS and LVIS data

Time Series Forest Disturbance
Global (excluding 

North/Central 
America, Europe)

50 m (0.25 ha) 90% of pixels, 
annual

Optical imagery 
time series over 

selected sites

Landsat time series 
data, high-resolu-

tion imagery

Same approach as 
pre-launch

Distributed globally 
at deforestation hot 

spots

NISAR

HH & HV 
Backscattter

Aboveground 
biomass 

< 100 Mg/ha

Global low biomass 
areas 100 m (1 ha) 20 Mg/ha, 80% px 

< 100 Mg; annual

Radar biomass 
equations, 
algorithm

Plots > 1 ha & 
ALS data across 

ecoregions

NFI & regional 
samples

NFI data 
Distributed large 
plots & ALS dataALS & plots > 1 ha

Time Series
Disturbance 

> 50% change in 
canopy cover 

Global forests 100 m (1 ha) 80% of pixels, 
annual

High-res optical 
& ALOS/SAOCOM 
time series over 

selected sites

Landsat time series 
data, high-resolu-

tion imagery

Same approach as 
pre-launch

Distributed globally 
at deforestation hot 

spots
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