skip to main content
10.1145/3391614.3393658acmconferencesArticle/Chapter ViewAbstractPublication PagesimxConference Proceedingsconference-collections
research-article

Staying on Track: a Comparative Study on the Use of Optical Flow in 360° Video to Mitigate VIMS

Authors Info & Claims
Published:17 June 2020Publication History

ABSTRACT

Visually Induced Motion Sickness (VIMS), when the visual system detects motion that is not felt by the vestibular system, is a deterrent for first-time Virtual Reality (VR) users and can impact its adoption rate. Constricting the field-of-view (FoV) has been shown to reduce VIMS as it conceals optical flow in peripheral vision, which is more sensitive to motion. Additionally, several studies have suggested the inclusion of visual elements (e.g., grids) consistent with the real world as reference points. In this paper, we describe a novel technique dynamically controlled by a video’s precomputed optical flow and participants’ runtime head direction and evaluate it in a within-subjects study (N = 24) on a 360° video of a roller coaster. Furthermore, based on a detailed analysis of the video and participant’s experience, we provide insights on the effectiveness of the techniques in VIMS reduction and discuss the role of optical flow in the design and evaluation of the study.

Skip Supplemental Material Section

Supplemental Material

p82-bala-supp1.mp4

mp4

16.1 MB

p82-bala-supp2.mp4

mp4

15.9 MB

References

  1. 2015. [Extreme] 360° RollerCoaster at Seoul Grand Park. https://www.youtube.com/watch?v=8lsB-P8nGSMGoogle ScholarGoogle Scholar
  2. 2017. Introduction to Best Practices. https://developer.oculus.com/design/latest/concepts/bp_intro/Google ScholarGoogle Scholar
  3. 2017. Tunneling Demo | Google VR. https://developers.google.com/vr/elements/tunnelingGoogle ScholarGoogle Scholar
  4. Majed Al Zayer, Isayas B. Adhanom, Paul MacNeilage, and Eelke Folmer. 2019. The Effect of Field-of-View Restriction on Sex Bias in VR Sickness and Spatial Navigation Performance. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, 354:1–354:12. https://doi.org/10.1145/3290605.3300584Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Simon Baker and Iain Matthews. 2004. Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision 56, 3 (Feb. 2004), 221–255. https://doi.org/10.1023/B:VISI.0000011205.11775.fdGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  6. Paulo Bala, Raul Masu, Valentina Nisi, and Nuno Nunes. 2019. ”When the Elephant Trumps”: A Comparative Study on Spatial Audio for Orientation in 360° Videos. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, 695:1–695:13. https://doi.org/10.1145/3290605.3300925Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Berthoz, B. Pavard, and L. R. Young. 1975. Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions. Experimental Brain Research 23, 5 (Nov. 1975), 471–489.Google ScholarGoogle ScholarCross RefCross Ref
  8. Jiwan Bhandari, Paul MacNeilage, and Eelke Folmer. 2018. Teleportation without spatial disorientation using optical flow cues. In Proceedings of Graphics Interface, Vol. 2018.Google ScholarGoogle Scholar
  9. Roger Bivand, L. Anselin, O. Berke, A. Bernat, M. Carvalho, Y. Chun, C. F. Dormann, S. Dray, R. Halbersma, and N. Lewin-Koh. 2011. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-31, URL http://CRAN. R-project. org/package= spdep.Google ScholarGoogle Scholar
  10. Roger Bivand, Tim Keitt, Barry Rowlingson, and E. Pebesma. 2014. rgdal: Bindings for the geospatial data abstraction library. R package version 0.8-16(2014).Google ScholarGoogle Scholar
  11. Mark Bolas, J. Adam Jones, Ian McDowall, and Evan Suma. 2017. Dynamic field of view throttling as a means of improving user experience in head mounted virtual environments.Google ScholarGoogle Scholar
  12. Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. 2004. 3D User Interfaces: Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Th. Brandt, Johannes Dichgans, and Ed Koenig. 1973. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research 16, 5 (March 1973), 476–491. https://doi.org/10.1007/BF00234474Google ScholarGoogle ScholarCross RefCross Ref
  14. Mi-Hyun Choi, Soo-Jeong Lee, Hyo-Sung Kim, Jae-Woong Yang, Jin-Seung Choi, Gye-Rae Tack, Bongsoo Lee, Soon-Cheol Chung, Soo-Young Min, and Byung-Chan Min. 2009. Long-term study of simulator sickness: differences in psychophysiological responses due to individual sensitivity. In 2009 International Conference on Mechatronics and Automation. IEEE, 20–25.Google ScholarGoogle ScholarCross RefCross Ref
  15. Henry E. Cook, Justin A. Hassebrock, and L. James Smart. 2018. Responding to Other People’s Posture: Visually Induced Motion Sickness From Naturally Generated Optic Flow. Frontiers in Psychology 9 (2018), 1901. https://doi.org/10.3389/fpsyg.2018.01901Google ScholarGoogle ScholarCross RefCross Ref
  16. Simon Davis, Keith Nesbitt, and Eugene Nalivaiko. 2015. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), Vol. 27. 30. http://crpit.com/confpapers/CRPITV167Davis.pdfGoogle ScholarGoogle Scholar
  17. M. H. Draper, E. S. Viire, T. A. Furness, and V. J. Gawron. 2001. Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Human Factors 43, 1 (2001), 129–146. https://doi.org/10.1518/001872001775992552Google ScholarGoogle ScholarCross RefCross Ref
  18. Huiyu Duan, Guangtao Zhai, Xiongkuo Min, Yucheng Zhu, Wei Sun, and Xiaokang Yang. 2017. Assessment of Visually Induced Motion Sickness in Immersive Videos. In Advances in Multimedia Information Processing —PCM 2017(Lecture Notes in Computer Science). Springer, Cham, 662–672. https://doi.org/10.1007/978-3-319-77380-3_63Google ScholarGoogle Scholar
  19. Henry Been-Lirn Duh, Donald E. Parker, and Thomas A. Furness. 2001. An “Independent Visual Background” Reduced Balance Disturbance Envoked by Visual Scene Motion: Implication for Alleviating Simulator Sickness(CHI ’01). Association for Computing Machinery, New York, NY, USA, 85–89. https://doi.org/10.1145/365024.365051Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Henry Been-Lirn Duh, Donald E. Parker, and Thomas A. Furness. 2004. An Independent Visual Background Reduced Simulator Sickness in a Driving Simulator. Presence: Teleoperators and Virtual Environments 13, 5(2004), 578–588. https://doi.org/10.1162/1054746042545283 arXiv:https://doi.org/10.1162/1054746042545283Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Natalia Dużmańska, Paweł Strojny, and Agnieszka Strojny. 2018. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Frontiers in Psychology 9 (Nov. 2018). https://doi.org/10.3389/fpsyg.2018.02132Google ScholarGoogle Scholar
  22. Sheldon M. Ebenholtz. 2001. Oculomotor systems and perception. Cambridge University Press, New York.Google ScholarGoogle Scholar
  23. Gunnar Farnebäck. 2003. Two-frame motion estimation based on polynomial expansion. Image analysis (2003), 363–370.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ajoy S. Fernandes and Steven K. Feiner. 2016. Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI). 201–210. https://doi.org/10.1109/3DUI.2016.7460053Google ScholarGoogle Scholar
  25. Jos Feys. 2016. Nonparametric tests for the interaction in two-way factorial designs using R. The R Journal 8, 1 (2016), 367–378.Google ScholarGoogle ScholarCross RefCross Ref
  26. Andy Field, Jeremy Miles, and Zoë Field. 2012. Discovering statistics using R. Sage publications.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Moira B. Flanagan, James G. May, and Thomas G. Dobie. 2005. Sex differences in tolerance to visually-induced motion sickness. Aviation, space, and environmental medicine 76, 7 (2005), 642–646.Google ScholarGoogle Scholar
  28. Augusto Garcia-Agundez, Aiko Westmeier, Polona Caserman, Robert Konrad, and Stefan Göbel. 2017. An Evaluation of Extrapolation and Filtering Techniques in Head Tracking for Virtual Environments to Reduce Cybersickness. In Serious Games(Lecture Notes in Computer Science). Springer, Cham, 203–211. https://doi.org/10.1007/978-3-319-70111-0_19Google ScholarGoogle Scholar
  29. John F Golding. 1998. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin 47, 5 (Nov. 1998), 507–516. https://doi.org/10.1016/S0361-9230(98)00091-4Google ScholarGoogle ScholarCross RefCross Ref
  30. Peter A. Howarth and Simon G. Hodder. 2008. Characteristics of habituation to motion in a virtual environment. Displays 29, 2 (2008), 117 – 123. https://doi.org/10.1016/j.displa.2007.09.009 Health and Safety Aspects of Visual Displays.Google ScholarGoogle ScholarCross RefCross Ref
  31. Haikun Huang, Michael Solah, Dingzeyu Li, and Lap-Fai Yu. 2019. Audible Panorama: Automatic Spatial Audio Generation for Panorama Imagery. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems(CHI ’19). ACM, New York, NY, USA, 621:1–621:11. https://doi.org/10.1145/3290605.3300851Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Adam Jones, David M. Krum, and Mark T. Bolas. 2017. Vertical field-of-view extension and walking characteristics in head-worn virtual environments. ACM Transactions on Applied Perception (TAP) 14, 2 (2017), 9.Google ScholarGoogle Scholar
  33. Nupur Kala, Kyungmin Lim, Kwanghyun Won, Jaesung Lee, Tammy Lee, Sehoon Kim, and Wonhee Choe. 2017. P-218: An Approach to Reduce VR Sickness by Content Based Field of View Processing. SID Symposium Digest of Technical Papers 48, 1 (May 2017), 1645–1648. https://doi.org/10.1002/sdtp.11956Google ScholarGoogle ScholarCross RefCross Ref
  34. Shunichi Kasahara, Shohei Nagai, and Jun Rekimoto. 2015. First Person Omnidirectional Video: System Design and Implications for Immersive Experience(TVX ’15). Association for Computing Machinery, New York, NY, USA, 33–42. https://doi.org/10.1145/2745197.2745202Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3, 3 (July 1993), 203–220. https://doi.org/10.1207/s15327108ijap0303_3Google ScholarGoogle ScholarCross RefCross Ref
  36. Behrang Keshavarz, Heiko Hecht, and Lisa Zschutschke. 2011. Intra-visual conflict in visually induced motion sickness. Displays 32, 4 (Oct. 2011), 181–188. https://doi.org/10.1016/j.displa.2011.05.009Google ScholarGoogle ScholarCross RefCross Ref
  37. Nam-Gyoon Kim and Beom-Su Kim. 2019. The Effect of Retinal Eccentricity on Visually Induced Motion Sickness and Postural Control. Applied Sciences 9 (05 2019), 1–9. https://doi.org/10.3390/app9091919Google ScholarGoogle Scholar
  38. Young Youn Kim, Eun Nam Kim, Min Jae Park, Kwang Suk Park, Hee Dong Ko, and Hyun Taek Kim. 2008. The Application of Biosignal Feedback for Reducing Cybersickness from Exposure to a Virtual Environment. Presence 17, 1 (Feb. 2008), 1–16. https://doi.org/10.1162/pres.17.1.1Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Joseph J. LaViola, Jr.2000. A Discussion of Cybersickness in Virtual Environments. SIGCHI Bull. 32, 1 (Jan. 2000), 47–56. https://doi.org/10.1145/333329.333344Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jiun-Yu Lee, Ping-Hsuan Han, Ling Tsai, Rih-Ding Peng, Yang-Sheng Chen, Kuan-Wen Chen, and Yi-Ping Hung. 2017. Estimating the Simulator Sickness in Immersive Virtual Reality with Optical Flow Analysis. In SIGGRAPH Asia 2017 Posters(SA ’17). ACM, New York, NY, USA, 16:1–16:2. https://doi.org/10.1145/3145690.3145697Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. James Jeng-Weei Lin, Habib Abi-Rached, Do-Hoe Kim, Donald E. Parker, and Thomas A. Furness. 2002. A “Natural” Independent Visual Background Reduced Simulator Sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 46, 26 (2002), 2124–2128. https://doi.org/10.1177/154193120204602605 arXiv:https://doi.org/10.1177/154193120204602605Google ScholarGoogle Scholar
  42. Wen-Chih Lo, Ching-Ling Fan, Jean Lee, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu. 2017. 360° Video Viewing Dataset in Head-Mounted Virtual Reality. In Proceedings of the 8th ACM on Multimedia Systems Conference(MMSys’17). ACM, New York, NY, USA, 211–216. https://doi.org/10.1145/3083187.3083219Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ville Mäkelä, Tuuli Keskinen, John Mäkelä, Pekka Kallioniemi, Jussi Karhu, Kimmo Ronkainen, Alisa Burova, Jaakko Hakulinen, and Markku Turunen. 2019. What Are Others Looking at? Exploring 360° Videos on HMDs with Visual Cues about Other Viewers(TVX ’19). Association for Computing Machinery, New York, NY, USA, 13–24. https://doi.org/10.1145/3317697.3323351Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mark McGill, Alexander Ng, and Stephen Brewster. 2017. I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). ACM, New York, NY, USA, 5655–5668. https://doi.org/10.1145/3025453.3026046Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Doug McIlroy, Ray Brownrigg, Thomas P. Minka, and Roger Bivand. 2014. Mapproj: map projections. R package version (2014), 1–2.Google ScholarGoogle Scholar
  46. Jason D. Moss and Eric R. Muth. 2011. Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society 53, 3 (June 2011), 308–319. https://doi.org/10.1177/0018720811405196Google ScholarGoogle ScholarCross RefCross Ref
  47. Justin Munafo, Meg Diedrick, and Thomas A. Stoffregen. 2017. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental brain research 235, 3 (2017), 889–901.Google ScholarGoogle Scholar
  48. Mahdi Nabiyouni and Doug A. Bowman. 2016. A Taxonomy for Designing Walking-based Locomotion Techniques for Virtual Reality. In Proceedings of the 2016 ACM Companion on Interactive Surfaces and Spaces(ISS Companion ’16). ACM, New York, NY, USA, 115–121. https://doi.org/10.1145/3009939.3010076Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Anh Nguyen and Zhisheng Yan. 2019. A Saliency Dataset for 360-degree Videos. In Proceedings of the 10th ACM Multimedia Systems Conference(MMSys ’19). ACM, New York, NY, USA, 279–284. https://doi.org/10.1145/3304109.3325820Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Cuong Nguyen, Stephen DiVerdi, Aaron Hertzmann, and Feng Liu. 2017. Vremiere: In-Headset Virtual Reality Video Editing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems(CHI ’17). ACM, New York, NY, USA, 5428–5438. https://doi.org/10.1145/3025453.3025675Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. George D. Park, R. Wade Allen, Dary Fiorentino, Theodore J. Rosenthal, and Marcia L. Cook. 2006. Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. In Proceedings of the human factors and ergonomics society annual meeting, Vol. 50. SAGE Publications Sage CA: Los Angeles, CA, 2702–2706.Google ScholarGoogle ScholarCross RefCross Ref
  52. Edzer Pebesma. 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10, 1 (2018), 439–446. https://doi.org/10.32614/RJ-2018-009Google ScholarGoogle ScholarCross RefCross Ref
  53. J. D. Prothero, M. H. Draper, T. A. Furness, D. E. Parker, and M. J. Wells. 1999. The use of an independent visual background to reduce simulator side-effects. Aviation, Space, and Environmental Medicine 70, 3 Pt 1 (March 1999), 277–283.Google ScholarGoogle Scholar
  54. R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/Google ScholarGoogle Scholar
  55. Sharif Razzaque, Zachariah Kohn, and Mary C Whitton. 2001. Redirected Walking. Technical Report. University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Lisa Rebenitsch and Charles Owen. 2014. Individual Variation in Susceptibility to Cybersickness. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology(UIST ’14). ACM, New York, NY, USA, 309–317. https://doi.org/10.1145/2642918.2647394Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Lisa Rebenitsch and Charles Owen. 2016. Review on cybersickness in applications and visual displays. Virtual Reality 20, 2 (June 2016), 101–125. https://doi.org/10.1007/s10055-016-0285-9Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Gary E. Riccio and Thomas A. Stoffregen. 1991. An ecological Theory of Motion Sickness and Postural Instability. Ecological Psychology 3, 3 (Sept. 1991), 195–240. https://doi.org/10.1207/s15326969eco0303_2Google ScholarGoogle ScholarCross RefCross Ref
  59. Sylvia Rothe and Heinrich Hußmann. 2018. Spatial statistics for analyzing data in cinematic virtual reality. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces - AVI ’18. ACM Press, Castiglione della Pescaia, Grosseto, Italy, 1–3. https://doi.org/10.1145/3206505.3206561Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Santeri Saarinen, Ville Mäkelä, Pekka Kallioniemi, Jaakko Hakulinen, and Markku Turunen. 2017. Guidelines for Designing Interactive Omnidirectional Video Applications. In 16th IFIP TC 13 International Conference on Human-Computer Interaction — INTERACT 2017 - Volume 10516. Springer-Verlag, Berlin, Heidelberg, 263–272. https://doi.org/10.1007/978-3-319-68059-0_17Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Timothy Scaffidi. 2018. ofxOpticalFlowFarneback: openFrameworks addon for gunnar-farneback dense optical flow method. https://github.com/timscaffidi/ofxOpticalFlowFarneback original-date: 2012-11-13T08:43:28Z.Google ScholarGoogle Scholar
  62. Thomas Schubert, Frank Friedmann, and Holger Regenbrecht. 2001. The Experience of Presence: Factor Analytic Insights. Presence: Teleoper. Virtual Environ. 10, 3 (June 2001), 266–281. https://doi.org/10.1162/105474601300343603Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Mel Slater and Maria V. Sanchez-Vives. 2016. Enhancing Our Lives with Immersive Virtual Reality. Frontiers in Robotics and AI 3 (Dec. 2016). https://doi.org/10.3389/frobt.2016.00074Google ScholarGoogle Scholar
  64. Kay M. Stanney, D. Susan Lanham, Robert S. Kennedy, and Robert Breaux. 1999. Virtual Environment Exposure Drop-Out Thresholds. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 43, 22 (1999), 1223–1227. https://doi.org/10.1177/154193129904302212Google ScholarGoogle ScholarCross RefCross Ref
  65. Sam Tregillus. 2016. VR-Drop: Exploring the Use of Walking-in-Place to Create Immersive VR Games. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems(CHI EA ’16). ACM, New York, NY, USA, 176–179. https://doi.org/10.1145/2851581.2890374Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. M. Treisman. 1977. Motion sickness: an evolutionary hypothesis. Science (New York, N.Y.) 197, 4302 (July 1977), 493–495. https://doi.org/10.1126/science.301659Google ScholarGoogle Scholar
  67. Michael Venturino and Maxwell J. Wells. 1990. Head Movements as a Function of Field-of-View Size on a Helmet-Mounted Display. Proceedings of the Human Factors Society Annual Meeting 34, 19 (Oct. 1990), 1572–1576. https://doi.org/10.1177/154193129003401932Google ScholarGoogle ScholarCross RefCross Ref
  68. David Matthew Whittinghill, Bradley Ziegler, T Case, and B Moore. 2015. Nasum virtualis: A simple technique for reducing simulator sickness. In Games Developers Conference (GDC). 74.Google ScholarGoogle Scholar
  69. Hadley Wickham. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.orgGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  70. Bob G. Witmer and Michael J. Singer. 1998. Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments 7, 3 (June 1998), 225–240. https://doi.org/10.1162/105474698565686Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Higgins. 2011. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only Anova Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’11). ACM, New York, NY, USA, 143–146. https://doi.org/10.1145/1978942.1978963Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Robert Xiao and Hrvoje Benko. 2016. Augmenting the Field-of-View of Head-Mounted Displays with Sparse Peripheral Displays. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems(CHI ’16). ACM, New York, NY, USA, 1221–1232. https://doi.org/10.1145/2858036.2858212Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    IMX '20: Proceedings of the 2020 ACM International Conference on Interactive Media Experiences
    June 2020
    211 pages
    ISBN:9781450379762
    DOI:10.1145/3391614

    Copyright © 2020 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 17 June 2020

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate69of245submissions,28%

    Upcoming Conference

    IMX '24

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format