Skip to main content
Log in

Microstructure and hot corrosion resistance of Si-Al-Y coated TiAl alloy

TiAl 合金表面Si-Al-Y 渗层的组织及热腐蚀性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to obtain a high-performance surface on TiAl alloy that can meet the requirements in hot corrosion environment, Si-Al-Y coatings were fabricated by pack cementation process at 1050 °C for 4 h. Corrosion behaviors of the TiAl alloy with and without Si-Al-Y coatings are compared to illustrate the factors and corresponding mechanism in molten salt environment of 25wt% K2SO4 and 75wt% Na2SO4 at 900 °C. The obtained Si-Al-Y coating was mainly composed of a TiSi2 outer layer, a (Ti, X)5Si4 and (Ti, X)5Si3 (X represents Nb or Cr element) middle layer, a TiAl2 inner layer and a Al-rich inter-diffusion zone. The inter-phase selective corrosion containing corrosion pits extending along α2 phase from lamellar interfaces in hot corrosion tested TiAl alloy was observed. However, by being coated with Si-Al-Y coating, the hot corrosion performance of TiAl alloy was improved remarkably.

摘要

为了提高TiAl 合金的抗热腐蚀性能, 采用1050 °C 下扩散共渗4 h 的方法在TiAl 合金表面制备 了Si-Al-Y 渗层。研究了TiAl 合金基体及渗层在900 °C 的25%K2SO4+75%Na2SO4 熔盐(质量分数)中 的热腐蚀行为, 探讨了其腐蚀速率和腐蚀机理。结果表明:Si-Al-Y 共渗层由外向内依次为 TiSi2 外层、 (Ti,X)5Si4 及(Ti,X)5Si3(X 表示Nb, Cr)中间层、TiAl2 和γ-TiAl 内层及富Al 的过渡层 。在K2SO4+Na2SO4 熔盐中, TiAl 合金沿着层片状的α2 相发生了选择性的腐蚀; 经过制备Si-Al-Y 渗层后, TiAl 合金的抗 热腐蚀性能得到了显著的提高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG S Q, XIE F Q, WU X Q, CHEN L Y. CeO2 doped Al2O3 composite ceramic coatings fabricated on γ-TiAl alloys via cathodic plasma electrolytic deposition [J]. Journal of Alloys and Compounds, 2019, 788: 632–638. DOI: https://doi.org/10.1016/j.jallcom.2019.02.065.

    Article  Google Scholar 

  2. CHANG J, LI F, ZHU S Y, YU Y, QIAO Z H, YANG J. Electrochemical corrosion and tribological evaluation of TiAl alloy for marine application [J]. Tribology International, 2017, 115: 483–492. DOI: https://doi.org/10.1016/j.triboint.2017.06.027.

    Article  Google Scholar 

  3. XIANG Z D, ROSE S R, BURNELL-GRAY J S. Co-deposition of aluminide and silicide coatings on-Ti-Al by pack cementation process [J]. Journal of Materials Science, 2003, 38: 19–28. DOI: https://doi.org/10.1023/A:1021149413017.

    Article  Google Scholar 

  4. SINGH V, MONDAL C, KUMAR A, BHATTACHARJEE P, GHOSAL P. High temperature compressive flow behavior and associated microstructural development in a β-stabilized high Nb-containing γ-TiAl based alloy [J]. Journal of Alloys and Compounds, 2019, 788: 573–585. DOI: https://doi.org/10.1016/j.jallcom.2019.02.207.

    Article  Google Scholar 

  5. LIN H, LIANG W P, JIA Y L, MIAO Q, HU R Y, YU L J. Effect of Al-Y gradient coating on hot corrosion resistance of γ-TiAl alloy at different temperatures [J]. Applied surface Science, 2019, 487: 868–875. DOI: https://doi.org/10.1016/j.apsusc.2019.05.168.

    Article  Google Scholar 

  6. WU L K, WU J J, WU W Y, HOU G Y, CAO H Z, TANG U P, ZHANG H B, ZHENG G Q. High temperature oxidation resistance of γ-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating [J]. Corrosion Science, 2019, 146: 18–27. DOI: https://doi.org/10.1016/j.corsci.2018.10.031.

    Article  Google Scholar 

  7. ZHANG N, LIN J P, WANG Y L. Influence of W, B, and Y elements on antioxidation of high temperature and long term for Ti-Al based alloys with high Nb content [J]. Rare Metal Materials and Engineering, 2007, 36: 884–887. DOI: CNKI:SUN:COSE.0.2007-05-031.

    Google Scholar 

  8. XIAO Z X, ZHENG L J, WANG L. Microstructure evolution of Ti-47Al-2Cr-2Nb alloys in the liquid-metal-cooling (LMC) directional-solidification process [J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26: 197–201. DOI: CNKI:SUN:WLGY.0.2011-02-005.

    Article  Google Scholar 

  9. CLEMENS H, SMARSLY W. Light-weight intermetallic titanium aluminidesstatus of research and development [J]. Advanced Materials Research, 2011, 278: 551–556. DOI: https://doi.org/10.4028/www.scientific.net/AMR.278.551.

    Article  Google Scholar 

  10. IMAYEV V, IMAYEV R, KHISMATULLIN T, OLENEVA T, GUHTER V, FECHT H J. Microstructure and processing ability of β-solidifying TNM-based γ-TiAl alloys [J]. Materials science forum, 2010, 638: 235–240. DOI: https://doi.org/10.4028/www.scientific.net/MSF.638-642.235.

    Article  Google Scholar 

  11. LI X Y, FAN A L, TANG B. Tribological behavior of molybdenum alloying layer on Ti6Al4V by double glow discharge technique [J]. Tribology, 2003, 23: 108–111. DOI: CNKI:SUN:MCXX.0.2003-02-007.

    Google Scholar 

  12. GORAL M, SWADZBA L, MOSKAL G, HETMANCZYK M, TETSUI T. Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method [J]. Intermetallics, 2009, 17: 965–967. DOI: https://doi.org/10.1016/j.intermet.2009.04.006.

    Article  Google Scholar 

  13. WANG J Q, KONG L Y, LI T F, XIONG T Y. High temperature oxidation behavior of Ti(Al,Si)3 diffusion coating on γ-TiAl by cold spray [J]. Transactions of Nonferrous Metals Society of China, 2016, 26: 1155–1162. DOI: https://doi.org/10.1016/S1003-6326(16)64214-0.

    Article  Google Scholar 

  14. SWADZBA L, MACIEJNY A, MENDALA B, MOSKAL G, JARCZYK G. Structure and resistance to oxidation of an Al-Si diffusion coating deposited by arc-PVD on a TiAlCrNb alloy [J]. Surface and Coatings Technology, 2003, 165: 273–280. DOI: https://doi.org/10.1016/s0257-8972(02)00742-9.

    Article  Google Scholar 

  15. LI X T, HUANG L J, JIANG S, GAO Y N, WANG Q S, ZHANG R, GENG L. Microstructure and super oxidation resistance of the network structured Ti-Al-Si coating [J]. Journal of Alloys and Compounds, 2019, 80730: No. 151679. DOI: https://doi.org/10.1016/j.jallcom.2019.151679.

    Google Scholar 

  16. LUO Q, LI Q, ZHANG J Y, CHEN S L, CHOU K C. Experimental investigation and thermodynamic calculation of the Al-Si-Ti system in Al-rich corner [J]. Journal of Alloys and Compounds, 2014, 602: 58–65. DOI: https://doi.org/10.1016/j.jallcom.2014.02.107.

    Article  Google Scholar 

  17. LUO Q, LI Q, ZHANG J Y, CHEN S L, CHOU K C. Microstructural evolution and oxidation behavior of hot-dip 55wt.% Al-Zn-Si coated steels [J]. Journal of Alloys and Compounds, 2015, 646: 843–851. DOI: https://doi.org/10.1016/j.jallcom.2015.05.257.

    Article  Google Scholar 

  18. CHOU K C, LUO Q, LI Q, ZHANG J Y. Influence of the density of oxide on oxidation kinetics [J]. Intermetallics, 2014, 47: 17–22. DOI: https://doi.org/10.1016/j.intermet.2013.11.024.

    Article  Google Scholar 

  19. LI Y Q, QIN C, LI J L, JIANG L, GENG G H. Microstructure and hot corrosion behavior of Al-Ce-Y coatings on DZ125 nickel-based alloy prepared by pack cementation process [J]. Journal of Central South University, 2020, 27: 381–387. DOI: https://doi.org/10.1007/s11771-020-4303-4.

    Article  Google Scholar 

  20. WANG H Y, ZHANG X, XU Z, WANG H, ZHU C S. Hot corrosion behaviour of Al-Si coating in mixed sulphate at 1150 °C [J]. Corrosion Science, 2018, 147: 313–320. DOI: https://doi.org/10.1016/j.corsci.2018.11.026.

    Article  Google Scholar 

  21. TIAN X D, GUO X P, SUN Z P, LI M, WANG L J. Effects of Y2O3/Y on Si-B co-deposition coating prepared through HAPC method on pure molybdenum [J]. Journal of Rare Earths, 2016, 34: 952–957. DOI: https://doi.org/10.1016/S1002-0721(16)60120-5.

    Article  Google Scholar 

  22. ZHANG P, GUO X P. Y and Al modified silicide coatings on an Nb-Ti-Si based ultrahigh temperature alloy prepared by pack cementation process [J]. Surface and Coating Technology, 2011, 206: 446–454. DOI: https://doi.org/10.1016/j.surfcoat.2011.07.056.

    Article  Google Scholar 

  23. PFLUMM R, FRIEDLE S, SCHÜTZE M. Oxidation protection of γ-TiAl-based alloys (A review) [J]. Intermetallics, 2015, 56: 1–14. DOI: https://doi.org/10.1016/j.intermet.2014.08.002.

    Article  Google Scholar 

  24. ZHOU W, ZHAO Y G, QIN Q D. A new way to produce Al-Cr coating on Ti alloy by vacuum fusing method and its oxidation resistance [J]. Materials Science and Engineering A, 2006, 430: 254–259. DOI: https://doi.org/10.1016/j.msea.2006.05.101.

    Article  Google Scholar 

  25. XU Y, MIAO Q, LIANG W P, YU X S, JIANG Q, ZHANG Z G, REN B L, YAO Z J. Tribological behavior of Al2O3/Al composite coating on γ-TiAl at elevated temperature [J]. Materials Characterization, 2015, 101: 122–129. DOI: https://doi.org/10.1016/j.matchar.2015.01.009.

    Article  Google Scholar 

  26. LI Y Q, XIE F Q, WU X Q. Effects of Y2O3 on the microstructures and wear resistance of Si-Al-Y Co-deposition coatings prepared on Ti-Al Alloy by pack cementation technique [J]. Applied Surface Science, 2013, 287: 30–36. DOI: https://doi.org/10.1016/j.apsusc.2013.09.050.

    Article  Google Scholar 

  27. LIN N M, ZHAO L L, LIU Q, ZOU J J, XIE R Z, LI D L, TANG B. Preparation of titanizing coating on AISI 316 stainless steel by pack cementation to mitigate surface damage: Estimations of corrosion resistance and tribological behavior [J]. Journal of Physics and Chemistry of Solids, 2019, 129: 387–400. DOI: https://doi.org/10.1016/j.jpcs.2019.01.029.

    Article  Google Scholar 

  28. LI Y Q, XIE F Q, Wu X Q, LI X. Microstructure and high temperature oxidation resistance of Si-Al-Y Co-deposition coatings prepared on TiAl alloy by pack cementation process [J]. Journal of Inorganic Materials, 2013, 28(12): 1369–1375. DOI: https://doi.org/10.1016/S1003-6326(15)63666-4.

    Article  Google Scholar 

  29. LI Y Q, XIE F Q, WU X Q. Si-Al-Y Co-deposition coatings prepared on Ti-Al Alloy for enhanced high temperature oxidation resistance [J]. Journal of Wuhan University of Technology-Material, 2018, 33: 959–964. DOI: https://doi.org/10.1007/s11595-018-1919-4.

    Article  Google Scholar 

  30. LI Y Q, XIE F Q, WU X Q. Effects of Y2O3 on the microstructures and wear resistance of Si-Al-Y co-deposition coatings prepared on Ti-Al alloy by pack cementation technique [J]. Applied Surface Science, 2013, 287: 30–36. DOI: https://doi.org/10.1016/j.apsusc.2013.09.050.

    Article  Google Scholar 

  31. LI Y Q, XIE F Q, WU X Q, YAO X F. Effects of Temperature on microstructures of Si-Al-Y co-deposition coatings on TiAl alloy [J]. Journal of Materials Engineering, 2014, 6: 22–27. DOI: https://doi.org/10.3969/j.issn.1001-4381.2013.06.001v.

    Google Scholar 

  32. LIN H, LIANG W P, JIA Y, MIAO Q, HU R Y, DING Z, YU L J. Effect of Al-Y gradient coating on hot corrosion resistance of γ-TiAl alloy at different temperatures [J]. Applied Surface Science, 2019, 487: 868–875. DOI: https://doi.org/10.1016/j.apsusc.2019.05.168.

    Article  Google Scholar 

  33. BRADY M P, BRINDLEY W J, SMIALEK J L. The oxidation and protection of gamma titanium aluminides [J]. JOM, 1996, 11: 46–50. DOI: https://doi.org/10.1007/bf03223244.

    Article  Google Scholar 

  34. ZHAO W Y, XU B W, MA Y, GONG S K. Inter-phase selective corrosion of γ-TiAl alloy in molten salt environment at high temperature [J]. Progress in Nature Science: Materials International, 2011, 21: 322–329. DOI: CNKI:SUN:ZKJY.0.2011-04-010.

    Article  Google Scholar 

  35. SHIRVANI K, SAREMI M, NISHIKATA A, TSURU T. Electrochemical study on hot corrosion of Si-modified aluminide coated In-738LC in Na2SO4-20wt.% NaCl melt at 750 °C [J]. Corrosion Science, 2003, 45: 1011–1021. DOI: https://doi.org/10.1016/S0010-938X(02)00127-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-quan Li  (李涌泉).

Additional information

Foundation item

Project(2020AAC02025) supported by the Natural Science Foundation of Ningxia Province, China; Project(51961003) supported by the National Natural Science Foundation of China; Project(TJGC2019040) supported by the Ningxia Youth Talents Supporting Program, China; Project(2020xyzc103) supported by the Foundation of North Minzu University, China

Contributors

The overarching research goals were developed by XIE Fa-qin and LI Yong-quan. The initial draft of the manuscript was written by LI Yong-quan. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

LI Yong-quan, XIE Fa-qin and YANG Shao-lin declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yq., Xie, Fq. & Yang, Sl. Microstructure and hot corrosion resistance of Si-Al-Y coated TiAl alloy. J. Cent. South Univ. 27, 2530–2537 (2020). https://doi.org/10.1007/s11771-020-4478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4478-8

Key words

关键词

Navigation