Skip to main content
Log in

Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment

磷石膏改良作用下赤泥的碱性变化

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aiming at alkaline problem of bauxite residue, this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment. The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt% phosphogypsum was added for 91 d. The removal rates of free alkali and exchangeable sodium were 97.94% and 75.87%, respectively. Meanwhile, significant positive correlations (P<0.05) existed between pH and free alkali, exchangeable sodium. The effect of free alkali composition was CO32–>OH–> AlO2>HCO3. In addition, alkaline phase decreased from 52.81% to 48.58% and gypsum stably presented in bauxite residue which continuously provided Ca2+ to inhibit dissolution of combined alkali. Furthermore, phosphogypsum promoted formation of macroaggregate structure, increased Ca2+, decreased Na+ and Al3+ on the surface of bauxite residue significantly, ultimately promoting soil formation in bauxite residue.

摘要

赤泥碱性转化是氧化铝工业处置固体废物面临的世界性难题。本文开展工业废弃物对赤泥碱性 改良研究,结果表明:磷石膏最优添加量为1.50 wt%,处理91 天后,赤泥pH 由10.83 降至8.70;自 由碱去除率为97.94%,可交换性钠去除率为75.87%,自由碱、可交换性钠和赤泥pH 存在显著正相 关关系 (P<0.05);自由碱的作用效果为CO32–>OH–>AlO2>HCO3;化学结合碱含量从52.81%降至 48.58%,固相中稳定性强的石膏为液相体系持续提供Ca2+,抑制结合碱的溶解;磷石膏促进团聚体形 成,表面Ca2+含量增加, Na+、Al3+含量降低,有利于加快赤泥土壤化进程。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  2. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132. DOI: 10.1007/s11356-015–4558-8.

    Article  Google Scholar 

  3. ZHU Feng, XUE Sheng-guo, HARTLEY W, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23(3): 2856–2863. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  4. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, MANIKANDANA R, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: The potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  5. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of Total Environmental, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  6. ZHU Feng, LI Xiao-fei, XUE Sheng-guo, HARTLEY W, WU Chuan, HAN Fu. Natural plant colonization improves the physical condition of bauxite residue over time [J]. Environmental Science and Pollution Research, 2016, 23(22): 22897–22905. DOI: 10.1007/s11356-016-7508-1.

    Article  Google Scholar 

  7. XUE Sheng-guo, YE Yu, ZHU Feng, WANHG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.0 10.

    Article  Google Scholar 

  8. LI Yi-wei, JIANG Jun, XUE Sheng-guo, MILLAR G J, KONG Xiang-feng, LI Xiao-fei, LI Meng, LI Chu. Effect of ammonium chloride on leaching behavior of alkaline anion and sodium ion in bauxite residue [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2125–2134. DOI: 10.1016/S1003-6326(18)64857-5.

    Article  Google Scholar 

  9. PAN Xiao, YU Hai, TU Gan. Reduction of alkalinity in bauxite residue during bayer digestion in high-ferrite diasporic bauxite [J]. Hydrometallurgy, 2015, 151(1): 98–106. DOI: 10.1016/j.hydromet.2014.11.015.

    Article  Google Scholar 

  10. PARADIS M, DUCHESNE J, LAMONTAGNE A, ISABEL D. Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings [J]. Applied Geochemistry, 2007, 22(11): 2326–2333. DOI: 10.1016/j.apgeochem.2007.04.021.

    Article  Google Scholar 

  11. WHITTINGTON B I, FLETCHER B L, TALBOT C. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions [J]. Hydrometallurgy, 1998, 49(1, 2): 1–22. DOI: 10.1016/S0304-386X(98)00021-8.

    Article  Google Scholar 

  12. ZHU Xiao-bo, LI Wang, GUAN Xue-mao. An active dealkalization of red mud with roasting and water leaching [J]. Journal of Hazardous Materials, 2015, 286: 85–91. DOI: 10.1016/j.jhazmat.2014.12.048.

    Article  Google Scholar 

  13. GRAFE M, POWER G, KLAUBER C. Bauxite residue issues: III. Alkalinity and associated chemistry [J]. Hydrometallurgy, 2011, 108(1): 60–79. DOI: 10.1016/j.hyd romet.2011.02.004.

    Google Scholar 

  14. BARROW N J. Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils [J]. Crop & Pasture Science, 1982, 33(2): 275–285. DOI: 10.1071/AR9820275.

    Article  Google Scholar 

  15. MAYES W M, YOUNGER P L, AUMONIER J. Buffering of alkaline steel slag leachate across a natural wetland [J]. Environmental Science & Technology, 2006, 40(4): 1237–1243. DOI: 10.1021/es051304u.

    Article  Google Scholar 

  16. SHI Ben, QU Yang, LI Hui. Gypsum alleviated hydroxyl radical-mediated oxidative damages caused by alkaline bauxite residue in leaves of atriplex canescens [J]. Ecological Engineering, 2017, 98: 166–171. DOI: 10.1016/j. ecoleng.2016.10.008.

    Article  Google Scholar 

  17. XUE Sheng-guo, WU Yu, LI Yi-wei, KONG Xiang-feng, ZHU Feng, WILLIAM H, LI Xiao-fei, YE Yu. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  18. COURTNEY R, KIRWAN L. Gypsum amendment of alkaline bauxite residue-plant available aluminium and implications for grassland restoration [J]. Ecological Engineering, 2012, 42(5): 279–282. DOI: 10.1016/j.ecolen g.2012.02.025.

    Article  Google Scholar 

  19. TAYIBI H, CHOURA M, LOPEZ F A, ALGUACIL F J, LOPEZDELGADO A. Environmental impact and management of phosphogypsum [J]. Journal of Environmental Management, 2009, 90(8): 2377–2386. DOI: 10.1016/j.jenvman.2009.03.007.

    Article  Google Scholar 

  20. TAHER M A. Influence of thermally treated phosphogypsum on the properties of portland slag cement [J]. Resources Conservation & Recycling, 2008, 52(1): 28–38. DOI: 10.1016/j.resconrec.2007.01.008.

    Article  Google Scholar 

  21. PAPAGEORGIOU F, GODELITSAS A, MERTZIMEKIS T J, XANTHOS S, VOULGARIS N, KATSANTONIS G. Environmental impact of phosphogypsum stockpile in remediated schistos waste site (Piraeus, Greece) using a combination of γ-ray spectrometry with geographic information systems [J]. Environmental Monitoring & Assessment, 2016, 188(3): 1–14. DOI: 10.1007/s10661-01 6–5136-3.

    Article  Google Scholar 

  22. ZHANG Ru, LI Yan, LIU Jie, ZHAO Yue, JIANG Yu. Utilization of phosphogypsum and treatment of the impure elements [J]. Conservation and Utilization of Mineral Resources, 2015(2): 50–54. (in Chinese)

    Google Scholar 

  23. CHANDARA C, AZIZLI K A, AHMAD Z A, SAKAI E. Use of waste gypsum to replace natural gypsum as set retarders in portland cement [J]. Waste Management, 2009, 29(5): 1675–1679. DOI: 10.1016/j.wasman.2008.11.014.

    Article  Google Scholar 

  24. SANTINI T C, MARTIN V F, ROBERT J G. Experimental simulation of long term weathering in alkaline bauxite residue tailings [J]. Metals, 2015, 5(3): 1241–1261. DOI: info:doi/10.3390/met5031241.

    Article  Google Scholar 

  25. LIU Jin, HU Hui, WANG Meng, CHEN Xiang, CHEN Qi, DING Zhi. Synthesis of modified polyacrylamide with high content of hydroxamate groups and settling performance of red mud [J]. Journal of Central South University, 2015, 22(6): 2073–2080. DOI: 10.1007/s11771-015-2731-3.

    Article  Google Scholar 

  26. YU Yang, WU Yong, YU Li, SHEN Wan. Effect and mechanism of phosphogypsum and CaCO3 on dealkalization of red mud [J]. Inorganic Chemicals Industry, 2014, 46(10): 58–61. (in Chinese)

    Google Scholar 

  27. SUN Dao. Dealkalization and reclaiming valuable Ti and Sc from red mud [J]. Inorganic Chemicals Industry, 2008, 40(10): 49–52. (in Chinese)

    Google Scholar 

  28. LIAO C Z, ZENG L, SHIH K. Quantitative X-ray diffraction (QXRD) analysis for revealing thermal transformations of red mud [J]. Chemosphere, 2015, 131: 171–177. DOI: 10.1016/j.chemosphere.2015.03.034.

    Article  Google Scholar 

  29. GATTA G D, LOTTI P, KAHLENBERG V, HAEFEKER U. The low-temperature behaviour of cancrinite: An in situ single-crystal X-ray diffraction study [J]. Mineralogical Magazine, 2012, 76(4): 933–948. DOI: 10.1180/minmag.2 012.076.4.10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-guo Xue  (薛生国).

Additional information

Foundation item: Projects(41877511, 41842020) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yw., Luo, Xh., Li, Cx. et al. Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment. J. Cent. South Univ. 26, 361–372 (2019). https://doi.org/10.1007/s11771-019-4008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4008-8

Key words

关键词

Navigation