Skip to main content
Log in

H control of an overactuated tilt rotors quadcopter

过动式倾斜转轮四轴飞行器的H控制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In recent years, unmanned aerial vehicles (UAVs) have acquired an increasing interest due to their wide range of applications in military, scientific, and civilian fields. One of the quadcopter limitations is its lack of full actuation property which limits its mobility and trajectory tracking capabilities. In this work, an overactuated quadcopter design and control, which allows independent tilting of the rotors around their arm axis, is presented. Quadcopter with this added tilting mechanism makes it possible to overcome the aforementioned mobility limitation by achieving full authority on torque and force vectoring. The tilting property increases the control inputs to 8 (the 4 propeller rotation speed plus the 4 rotor tilting angles) which gives a full control on the quadcopter states. Extensive mathematical model for the tilt rotor quadcopter is derived based on the Newton-Euler method. Furthermore, the feedback linearization method is used to linearize the model and a mixed sensitivity H optimal controller is then designed and synthesized to achieve the required performance and stability. The controlled system is simulated to assure the validity of the proposed controller and the quadcopter design. The controller is tested for its effectiveness in rejecting disturbances, attenuating sensor noise, and coping with the model uncertainties. Moreover, a complicated trajectory is examined in which the tilt rotor quadcopter has been successfully followed. The test results show the supremacy of the overactuated quadcopter over the traditional one.

摘要

近年来,无人机在军事、科学和民用领域应用广泛,引起了人们越来越多的兴趣。但由于它缺 乏充分的驱动特性,限制了它的移动性和轨迹跟踪能力。本文介绍了一种过动四轴飞行器的设计和控 制,它允许旋转器围绕其臂轴独立倾斜。附加倾摆机构通过获得充分的力矩和力矢量来克服上述的机 动性限制。倾斜特性使控制输入增加到8 个(4 个螺旋桨转速加4 个转子倾斜角),使四轴飞行器处于 完全控制状态。基于Newton-Euler 方法,推导出了转子倾斜四轴飞行器的广泛数学模型,并给出了反 馈线性化方法。采用线性化方法对模型进行线性化,设计合成一种混合灵敏度H最优控制器,以达 到所需的性能和稳定性。对控制系统进行了仿真,以保证控制器和四轴飞行器设计的有效性。测试了 该控制器的抑制干扰、抑制传感器噪声和处理模型不确定等方面的性能,并对其复杂轨迹进行了试验, 结果表明过动四轴飞行器优于传统的四轴飞行器。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeo H, Johnson W. Performance and design investigation of heavy lift tilt-rotor with aerodynamic interference effects [J]. Journal of Aircraft, 2009, 46(4): 1231–1239.

    Article  Google Scholar 

  2. Çetinsoy E, Dikyar S, Hançer C, Oner K T, Sirimoglu E, Unel M, Aksit M F. Design and construction of a novel quad tilt-wing UAV [J]. Mechatronics, 2012, 22(6): 723–745.

    Article  Google Scholar 

  3. Jeong S H, Jung S. Novel design and position control of an omni-directional flying automobile (Omni-flymobile) [C]// IEEE International Conference on Control Automation and Systems (ICCAS): 2010: 2480–2484.

    Google Scholar 

  4. Kendoul F, Fantoni I, Lozano R. Modeling and control of a small autonomous aircraft having two tilting rotors [C]// 44th IEEE Conference on Decision and Control. 2005: 8144–8149.

    Chapter  Google Scholar 

  5. Öner K T, Çetinsoy E, Ünel M, Aksit M F, Kandemir I, Gülez K. Dynamic model and control of a new quadrotor unmanned aerial vehicle with tilt-wing mechanism [J]. World Academy of Science, Engineering and Technology, 2008, 2(9): 58–63.

    Google Scholar 

  6. Sanchez A, Escareno J, Garcia O, Lozano R. Autonomous hovering of a noncyclic tiltrotor UAV: Modeling, control and implementation [C]// 7th IFAC World Congress. 2008, 41(2): 803–808.

    Google Scholar 

  7. Mohamed M K, Lanzon A. Design and control of novel tri-rotor UAV [C]// UKACC International Conference on Control. Cardiff, 2012: 304–309.

    Google Scholar 

  8. Ryll M, Bulthoff H H, Giordano P R. A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation [J]. IEEE Transactions on Control Systems Technology, 2015, 23(2): 540–556.

    Article  Google Scholar 

  9. Naldi R, Marconi L, Marconi L. Modeling and control of the interaction between flying robots and the environment [C]// 8th IFAC Symposium on Nonlinear Control Systems. 2010, 43(14): 975–980.

    Google Scholar 

  10. Marconi L, Naldi R, Gentili L. Modelling and control of a flying robot interacting with the environment [J]. Automatica, 2011, 47(12): 2571–2583.

    Article  MathSciNet  MATH  Google Scholar 

  11. Senkul F, Altug E. Modeling and control of a novel tilt—Roll rotor quadrotor UAV [C]// Int Conf on Unmanned Aircraft Systems (ICUAS). 2013: 1071–1076.

    Google Scholar 

  12. Elfeky M, Elshafei M, Saif A W, Al-Malki M F. Quadrotor helicopter with tilting rotors: Modeling and simulation [C]// World Congress on Computer and Information Technology (WCCIT). 2013: 1–5.

    Google Scholar 

  13. Gupte S, Mohandas P I T, Conrad J M. A survey of quadrotor unmanned aerial vehicles [C]// Proceedings of IEEE. Southeastcon, Orlando, FL, USA. 2012: 1–6.

    Google Scholar 

  14. Erginer B B, Altug E. Modeling and PD control of a quadrotor VTOL vehicle [C]// IEEE Intelligent Vehicles Symposium. 2007: 894–899.

    Google Scholar 

  15. Khatoon S, Shahid M, Chaudhary H, Khatoon S, Shahid M, Chaudhary H. Dynamic modeling and stabilization of quadrotor using PID controller [C]// Int Conf on Advances in Computing, Communications and Informatics (ICACCI). New Delhi, 2014: 746–750.

    Google Scholar 

  16. Nicol C C, Macnab J B, Ramirez-Serrano A. Robust neural network control of a quadrotor helicopter [C]// Canadian Conf on Electrical and Computer Engineering. 2008: 1233–1238.

    Google Scholar 

  17. Zhang X, Li X, Wang K, Lu Y. A Survey of Modelling and Identification of Quadrotor Robot [J]. Abstract and Applied Analysis, 2014, Article ID 320526.

    Google Scholar 

  18. Nemati A, Kumar M. Modeling and control of a single axis tilting quadcopter [C]// American Control Conf (ACC). 2014: 3077–3082.

    Google Scholar 

  19. Bayrakceken M K, Yalcin M K, Arisoy A, Karamancioglu A. HIL simulation setup for attitude control of a quadrotor [C]// IEEE Int Conf on Mechatronics (ICM). 2011: 354–357.

    Google Scholar 

  20. Khorani V, Ajilforoushan N, Shahri A M. An IMU-based system identification technique for quadrotors [C]// IEEE 3rd Joint Conf on AI & Robotics and 5th RoboCup Iran Open International Symposium (RIOS). 2013: 1–6.

    Google Scholar 

  21. Stingu E, Lewis F. Design and implementation of a structured flight controller for a 6DoF quadrotor using quaternions [C]// 17th Mediterranean Conf on Control and Automation. 2009: 1233–1238.

    Google Scholar 

  22. Salih A L, Moghavvemi M, Mohamed H A, Gaeid K S. Modelling and PID controller design for a quadrotor unmanned air vehicle [C]// IEEE Int Conf on Automation Quality and Testing Robotics (AQTR). 2010: 1–5.

    Google Scholar 

  23. Bouabdallah S, Noth A, Siegwart R. PID vs LQ control techniques applied to an indoor micro quadrotor [C]// IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS 2004). 2004, 3: 2451–2456.

    Article  Google Scholar 

  24. Fernando H C, De Silva A T, De Zoysa M D, Dilshan K A, Munasinghe S R. Modelling, simulation and implementation of a quadrotor UAV [C]// 8th IEEE Int Conf on Industrial and Information Systems (ICIIS). 2013: 207–212.

    Google Scholar 

  25. Mahony R, Kumar V, Corke P. Multirotor Aerial Vehicles: Modeling, estimation, and control of quadrotor [J]. IEEE Robotics and Automation Magazine, 2012, 19(3): 20–32.

    Article  Google Scholar 

  26. Phillips W F. Mechanics of Flight [M]. Wiley and Sons Inc., 2004.

    Google Scholar 

  27. Stepniewski W Z, Keys C N. Rotory-wing aerodynamics [M]. Dover Publications Inc., 1984.

    Google Scholar 

  28. Hamano F. Derivative of rotation matrix–direct matrix derivation of well-known formula [C]// Proceedings of Green Energy and Systems Conference, 2013, arXiv preprint arXiv:1311.6010.

    Google Scholar 

  29. Slotine J J E, Li W P. Applied nonlinear control [M]. Englewood Cliffs, NJ: Prentice-Hall, 1991.

    MATH  Google Scholar 

  30. Ackermann J. Robust control: The parameter space approach [M]. Springer Science & Business Media, 2012.

    Google Scholar 

  31. Zames G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses [J]. IEEE Trans Automat Control, 1981, 26(2): 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  32. Stoorvogel A. The H control problem: A state space approach [M]. Prentice Hall, 1992.

    Google Scholar 

  33. Athani V V, Agarwai S. Design of a robust controller for a supersonic aircraft using H approach [J]. Control Engineering Practice, 1994, 2(6): 1051–1061.

    Article  Google Scholar 

  34. Banavar R N, Dominic P. An LQG/H controller for a flexible manipulator [J]. IEEE Trans Control Systems Technology, 1995, 3(4): 409–416.

    Article  Google Scholar 

  35. Yan J, Salcudean S E. Teleoperation controller design using H optimization with application to motion scaling [J]. IEEE Trans Control System Technology, 1996, 4(3): 244–258.

    Article  Google Scholar 

  36. Safonov M G, Curtain R F. Imaginary-axis zeros in multivariable H -optimal control [M]. Berlin Heidelberg: Springer, 1987.

    Book  Google Scholar 

  37. Chiang R Y, Safonov M G. MATLAB Computation visualization programming user’s guide [M]. Natick, Massachusetts, USA: The Math Works Inc, 2005.

    Google Scholar 

  38. Xue D, Chen Y Q, Atherton D. Linear feedback control: Analysis and design with MATLAB [M]. SIAM Press, 2007.

    Book  MATH  Google Scholar 

  39. Postlethwaite I, O’Young S D, Gu D W, Hope J. H8 control system design: A critical assessment based on industrial applications [C]// IFAC 10th World Congress on Auto Control. Munich, 1987, 8: 328–333.

    Google Scholar 

  40. Postlethwaite I, Tsai M C, Gu D W. Weighting function selection in H8 design [C]// IFAC 11th Triennial World Congress, Automatic Control. 1990: 127–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alkamachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkamachi, A., Erçelebi, E. H control of an overactuated tilt rotors quadcopter. J. Cent. South Univ. 25, 586–599 (2018). https://doi.org/10.1007/s11771-018-3763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3763-2

Keywords

关键词

Navigation