skip to main content
research-article

A Survey of Automatic Contact Tracing Approaches Using Bluetooth Low Energy

Authors Info & Claims
Published:17 March 2021Publication History
Skip Abstract Section

Abstract

To combat the ongoing Covid-19 pandemic, many new ways have been proposed on how to automate the process of finding infected people, also called contact tracing. A special focus was put on preserving the privacy of users. Bluetooth Low Energy as base technology has the most promising properties, so this survey focuses on automated contact tracing techniques using Bluetooth Low Energy. We define multiple classes of methods and identify two major groups: systems that rely on a server for finding new infections and systems that distribute this process. Existing approaches are systematically classified regarding security and privacy criteria.

References

  1. CVE Details. 2019. Vulnerability Details: CVE-2019-2102. Retrieved December 2, 2020 from https://www.cvedetails.com/cve/CVE-2019-2102.Google ScholarGoogle Scholar
  2. Aargauer Zeitung. 2020. Kommission will keine Pflicht für Nutzung von Contact-Tracing-App. Retrieved December 2, 2020 from https://www.aargauerzeitung.ch/schweiz/kommission-will-keine-pflicht-fuer-nutzung-von-contact-tracing-app-137710182.Google ScholarGoogle Scholar
  3. Alberta Government Repository. 2020. ABTraceTogether iOS App. Retrieved December 2, 2020 from https://github.com/abopengov/contact-tracing-iOS.Google ScholarGoogle Scholar
  4. Thamer Altuwaiyan, Mohammad Hadian, and Xiaohui Liang. 2018. EPIC: Efficient privacy-preserving contact tracing for infection detection. In Proceedings of the 2018 IEEE International Conference on Communications (ICC’18). IEEE, Los Alamitos, CA, 1--6.Google ScholarGoogle Scholar
  5. Aradhana Aravindan and Sankalp Phartiyal. 2020. Bluetooth phone apps for tracking COVID-19 show modest early results. Technology News. Retrieved December 2, 2020 from https://www.reuters.com/article/us-health-coronavirus-apps/bluetooth-phone-apps-for-tracking-covid-19-show-modest-early-results-idUSKCN2232A0.Google ScholarGoogle Scholar
  6. Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti. 2020. Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully Decentralized Automatic Contact Tracing System. Report 2020/493. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  7. Lars Baumgärtner, Alexandra Dmitrienko, Bernd Freisleben, Alexander Gruler, Jonas Höchst, Joshua Kühlberg, Mira Mezini, et al. 2020. Mind the GAP: Security & privacy risks of contact tracing apps. arXiv:2006.05914Google ScholarGoogle Scholar
  8. James Bell, David Butler, Chris Hicks, and Jon Crowcroft. 2020. TraceSecure: Towards privacy preserving contact tracing. arxiv:2004.04059Google ScholarGoogle Scholar
  9. Alex Berke, Michiel A. Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Larson, and Alex ‘Sandy’ Pentland. 2020. Assessing disease exposure risk with location histories and protecting privacy: A cryptographic approach in response to a global pandemic. arXiv:2003.14412Google ScholarGoogle Scholar
  10. Berliner Zeitung. 2020. Raus aus dem Lockdown—Corona-Warn-App steht zum Download bereit, aber es gibt noch Forderungen. Retrieved December 2, 2020 from https://www.berliner-zeitung.de/zukunft-technologie/corona-warn-app-starttermin-am-dienstag-steht-aber-es-gibt-noch-forderungen-li.87669.Google ScholarGoogle Scholar
  11. Stefano Bertuletti, Andrea Cereatti, Ugo Della Croce, Michele Caldara, and Michael Galizzi. 2016. Indoor distance estimated from Bluetooth Low Energy signal strength: Comparison of regression models. In Proceedings of the IEEE Sensors Applications Symposium. IEEE, Los Alamitos, CA, 1--5. DOI:https://doi.org/10.1109/SAS.2016.7479899Google ScholarGoogle Scholar
  12. Wasilij Beskorovajnov, Felix Dörre, Gunnar Hartung, Alexander Koch, Jörn Müller-Quade, and Thorsten Strufe. 2020. ConTra Corona: Contact Tracing Against the Coronavirus by Bridging the Centralized--Decentralized Divide for Stronger Privacy. Report 2020/505. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  13. Bluetooth SIG. 2019. Bluetooth Core Specification. Retrieved December 2, 2020 from https://www.bluetooth.com/specifications/bluetooth-core-specification.Google ScholarGoogle Scholar
  14. Bluetooth SIG. 2020. 2020 Bluetooth Market Update. Retrieved December 2, 2020 from https://www.bluetooth.com/bluetooth-resources/2020-bmu/.Google ScholarGoogle Scholar
  15. Samuel Brack, Leonie Reichert, and Björn Scheuermann. 2020. Decentralized Contact Tracing Using a DHT and Blind Signatures. Report 2020/398. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  16. Fabian Buder. 2020. Adoption Rates for Contact Tracing App. Retrieved December 2, 2020 from https://www.nim.org/en/research/research-reports/adoption-rates-contact-tracing-app.Google ScholarGoogle Scholar
  17. Bundesministerium für Justiz und Verbraucherschutz. 2020. Verordnung über die Ausdehnung der Meldepflicht nach § 6 Absatz 1 Satz 1 Nummer 1 und § 7 Absatz 1 Satz 1 des Infektionsschutzgesetzes auf Infektionen mit dem erstmals im Dezember 2019 in Wuhan/Volksrepublik China aufgetretenen neuartigen Coronavirus (“2019-nCoV”). Retrieved December 2, 2020 from https://www.bundesgesundheitsministerium.de/service/gesetze-und-verordnungen.html.Google ScholarGoogle Scholar
  18. Matt Burgess. 2020. Coronavirus contact tracing apps were meant to save us. They won’ t. Wired. Retrieved December 2, 2020 from https://www.wired.co.uk/article/contact-tracing-apps-coronavirus.Google ScholarGoogle Scholar
  19. Justin Chan, Shyam Gollakota, Eric Horvitz, Joseph Jaeger, Sham Kakade, Tadayoshi Kohno, John Langford, et al. 2020. PACT: Privacy sensitive protocols and mechanisms for mobile contact tracing. arXiv:2004.03544Google ScholarGoogle Scholar
  20. David Chaum. 1982. Blind signatures for untraceable payments. In Advances in Cryptology. Plenum Press, New York, NY, 199--203.Google ScholarGoogle Scholar
  21. Bo-Rong Chen and Yih-Chun Hu. 2020. BlindSignedID: Mitigating denial-of-service attacks on digital contact tracing. arXiv:2008.09351Google ScholarGoogle Scholar
  22. Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast private set intersection from homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS’17). ACM, New York, NY, 1243--1255.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hyunghoon Cho, Daphne Ippolito, and Yun William Yu. 2020. Contact tracing mobile apps for COVID-19: Privacy considerations and related trade-offs. arXiv:2003.11511Google ScholarGoogle Scholar
  24. Corona Warn App Project. 2020. Availability. Retrieved December 2, 2020 from https://www.coronawarn.app/en/faq/#availability.Google ScholarGoogle Scholar
  25. Covid Watch. 2020. Home Page. Retrieved December 2, 2020 from https://www.covid-watch.org.Google ScholarGoogle Scholar
  26. Cristina Criddle and Leo Kelion. 2020. Coronavirus contact-tracing: World split between two types of app. BBC News. Retrieved December 2, 2020 from https://www.bbc.com/news/technology-52355028.Google ScholarGoogle Scholar
  27. Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. 2012. Fast and private computation of cardinality of set intersection and union. In Cryptology and Network Security. Lecture Notes in Computer Science, Vol. 7712. Springer, 218--231.Google ScholarGoogle Scholar
  28. George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion: Design of a type III anonymous remailer protocol. In Proceedings of IEEE Security and Privacy. IEEE, Los Alamitos, CA, 2--15.Google ScholarGoogle Scholar
  29. Helen Davidson. 2020. China’s coronavirus health code apps raise concerns over privacy. The Guardian. Retrieved December 2, 2020 from https://www.theguardian.com/world/2020/apr/01/chinas-coronavirus-health-code-apps-raise-concerns-over-privacy.Google ScholarGoogle Scholar
  30. Didem Demirag and Erman Ayday. 2020. Tracking and controlling the spread of a virus in a privacy-preserving way. arXiv:2003.13073Google ScholarGoogle Scholar
  31. Deutsche Welle. 2020. Coronavirus tracking apps: How are countries monitoring infections? DW. Retrieved December 2, 2020 from https://www.dw.com/en/coronavirus-tracking-apps-how-are-countries-monitoring-infections/a-53254234.Google ScholarGoogle Scholar
  32. Deutschlandfunk. 2020. Bundesjustizministerin: Handy-Tracking geht “nur mit Freiwilligkeit.” Retrieved December 2, 2020 from https://www.deutschlandfunk.de/corona-pandemie-bundesjustizministerin-handy-tracking-geht.694.de.html?dram:article_id--473683.Google ScholarGoogle Scholar
  33. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The second-generation onion router. In Proceedings of the 13th USENIX Security Symposium. 303--320.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Brian Dolan. 2009. SIG Introduces Bluetooth Low Energy Wireless Technology, the Next Generation of Bluetooth Wireless Technology. Retrieved December 2, 2020 from https://www.mobihealthnews.com/5828/sig-introduces-bluetooth-low-energy-wireless-technology-the-next-generation-of-bluetooth-wireless-technology.Google ScholarGoogle Scholar
  35. DP-3T. 2020. Best Practices Operational Security for Proximity Tracing. Retrieved December 2, 2020 from https://github.com/DP-3T/documents/blob/master/DP3T - Best Practices for Operation Security in Proximity Tracing.pdf.Google ScholarGoogle Scholar
  36. DP-3T. 2020. BLE Measurements. Retrieved December 2, 2020 from https://github.com/DP-3T/bt-measurements.Google ScholarGoogle Scholar
  37. DP-3T. 2020. Decentralized Proximity Tracing Interoperability Specification. Retrieved December 2, 2020 from https://github.com/DP-3T/documents/raw/master/DP3T - Interoperability Decentralized Proximity Tracing Specification (Preview).pdf.Google ScholarGoogle Scholar
  38. DP-3T. 2020. DP-3T Exposure Score Calculation - Summary. Retrieved December 2, 2020 from https://github.com/DP-3T/documents/raw/master/DP3T - Exposure Score Calculation.pdf.Google ScholarGoogle Scholar
  39. DP-3T. 2020. Failure to Rotate RPI and MAC Addresses. Retrieved December 3, 2020 from https://github.com/DP-3T/bt-measurements/blob/master/linkability.md.Google ScholarGoogle Scholar
  40. DP-3T. 2020. Privacy and Security Attacks on Digital Proximity Tracing Systems. Retrieved December 2, 2020 from https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf.Google ScholarGoogle Scholar
  41. DP-3T. 2020. Secure Upload Authorisation for Digital Proximity Tracing. Retrieved December 2, 2020 from https://github.com/DP-3T/documents/blob/master/DP3T-Upload Authorisation Analysis and Guidelines.pdf.Google ScholarGoogle Scholar
  42. Ken T. D. Eames and Matt J. Keeling. 2003. Contact tracing and disease control. Proceedings: Biological Science 270, 1533 (2003), 2565--2571.Google ScholarGoogle Scholar
  43. Lilian Edwards, Michael Veale, Orla Lynskey, Carly Kind, and Rachel Coldicutt. 2020. The Coronavirus (Safeguards) Bill 2020: Proposed protections for digital interventions and in relation to immunity certificates. LawArXiv Papers. Retrieved December 2, 2020 from https://www.osf.io/preprints/lawarxiv/yc6xu.Google ScholarGoogle Scholar
  44. Ramsey Faragher and Robert Harle. 2014. An analysis of the accuracy of Bluetooth Low Energy for indoor positioning applications. In ION GNSS+, Vol. 812. Institute of Navigation, Tampa, FL, 201--210.Google ScholarGoogle Scholar
  45. Ramsey Faragher and Robert Harle. 2015. Location fingerprinting with Bluetooth Low Energy beacons. IEEE Journal on Selected Areas in Communications 33, 11 (2015), 2418--2428.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dorner, Michael Parker, David Bonsall, and Christophe Fraser. 2020. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368, 6491 (2020), eabb6936.Google ScholarGoogle Scholar
  47. Simon M. Firestone, Robert M. Christley, Michael P. Ward, and Navneet K. Dhand. 2012. Adding the spatial dimension to the social network analysis of an epidemic: Investigation of the 2007 outbreak of equine influenza in Australia. Preventive Veterinary Medicine 106, 2 (2012), 123--135.Google ScholarGoogle Scholar
  48. FluPhone Study Team. 2011. FluPhone Project: Understanding Spread of Infectious Disease and Behavioural Responses. Retrieved December 2, 2020 from https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/fluphone2/.Google ScholarGoogle Scholar
  49. Matheus E. Garbelini, Chundong Wang, Sudipta Chattopadhyay, Sun Sumei, and Ernest Kurniawan. 2020. SweynTooth: Unleashing mayhem over Bluetooth Low Energy. In Proceedings of the 2020 USENIX Annual Technical Conference. 911--925.Google ScholarGoogle Scholar
  50. Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental game or a completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC’87). ACM, New York, NY, 218--229.Google ScholarGoogle Scholar
  51. Google and Apple. 2020. Exposure Notification: Bluetooth Specification. Retrieved December 2, 2020 from https://blog.google/documents/70/Exposure_Notification_-_Bluetooth_Specification_v1.2.2.pdf.Google ScholarGoogle Scholar
  52. Google and Apple. 2020. Privacy-Preserving Contact Tracing. Retrieved December 2, 2020 from https://covid19.apple.com/contacttracing.Google ScholarGoogle Scholar
  53. Google Inc. 2020. Exposure Notifications Verification Server. Retrieved December 2, 2020 from https://developers.google.com/android/exposure-notifications/verification-system.Google ScholarGoogle Scholar
  54. Government of Singapore. 2020. BlueTrace. Retrieved December 2, 2020 from https://bluetrace.io.Google ScholarGoogle Scholar
  55. Government of Singapore. 2020. TraceTogether. Retrieved December 2, 2020 from https://www.tracetogether.gov.sg.Google ScholarGoogle Scholar
  56. Government of Singapore Ministry of Health. 2020. Two Charged Under Infectious Diseases Act for False Information and Obstruction of Contact Tracing. Retrieved December 2, 2020 from https://www.moh.gov.sg/news-highlights/details/two-charged-under-infectious-diseases-act-for-false-information-and-obstruction-of-contact-tracing.Google ScholarGoogle Scholar
  57. Rajan Gupta, Manan Bedi, Prashi Goyal, Srishti Wadhera, and Vaishnavi Verma. 2020. Analysis of COVID-19 tracking tool in India: Case study of Aarogya Setu mobile application. Digital Government: Research and Practice 1, 4 (2020), Article 28, 8 pages.Google ScholarGoogle Scholar
  58. Yaron Gvili. 2020. Security Analysis of the COVID-19 Contact Tracing Specifications by Apple Inc. and Google Inc. Report 2020/428. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  59. Josef Hallberg, Marcus Nilsson, and Kare Synnes. 2003. Positioning with Bluetooth. In Proceedings of the 2003 10th International Conference on Telecommunications (ICT’03), Vol. 2. IEEE, Los Alamitos, CA, 954--958.Google ScholarGoogle Scholar
  60. Isobel A. Hamilton. 2020. Compulsory selfies and contact-tracing: Authorities everywhere are using smartphones to track the coronavirus, and it’s part of a massive increase in global surveillance. Business Insider. Retrieved December 2, 2020 from https://www.businessinsider.com/countries-tracking-citizens-phones-coronavirus-2020-3?r--DE&IR--T.Google ScholarGoogle Scholar
  61. Arvin Hekmati, Gowri Sankar Ramachandran, and Bhaskar Krishnamachari. 2020. CONTAIN: Privacy-oriented Contact tracing protocols for epidemics. arXiv:2004.05251Google ScholarGoogle Scholar
  62. Robert Hinch, Will Probert, Anel Nurtay, Michelle Kendall, Chris Wymant, Matthew Hall, Katrina Lythgoe, et al. 2020. Effective configurations of a digital contact tracing app: A report to NHSX. GitHub. Retrieved December 2, 2020 from https://github.com/BDI-pathogens/covid-19_instant_tracing.Google ScholarGoogle Scholar
  63. Ramon Huerta and Lev S Tsimring. 2002. Contact tracing and epidemics control in social networks. Physical Review E 66, 5 (2002), 056115.Google ScholarGoogle ScholarCross RefCross Ref
  64. INRIA. 2020. The StopCovid Project, a Digital Solution to Contribute to the Citizens’ Fight Against the Covid19 Epidemic. Retrieved December 2, 2020 from https://www.inria.fr/en/le_projet_stopcovid.Google ScholarGoogle Scholar
  65. Institut National de Recherche en Informatique et en Automatique (INRIA). 2020. ROBust and privacy-presERving proximity Tracing protocol. GitHub. Retrieved December 2, 2020 from https://www.github.com/ROBERT-proximity-tracing/documents.Google ScholarGoogle Scholar
  66. Andrea Jelinek. 2020. EDPB Letter concerning the European Commission’s draft Guidance on apps supporting the fight against the COVID-19 pandemic. EDPB. Retrieved December 2, 2020 from https://edpb.europa.eu/our-work-tools/our-documents/letters/edpb-letter-concerning-european-commissions-draft-guidance-apps_en.Google ScholarGoogle Scholar
  67. Seungyeon Jeong, Seungho Kuk, and Hyogon Kim. 2019. A smartphone magnetometer-based diagnostic test for automatic contact tracing in infectious disease epidemics. IEEE Access 7 (2019), 20734--20747.Google ScholarGoogle ScholarCross RefCross Ref
  68. Mahabir Prasad Jhanwar and Sumanta Sarkar. 2020. PHyCT: Privacy preserving Hybrid Contact Tracing. Report 2020/793. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  69. Otso Jousimaa. 2020. Bluetooth beacon density maximum. FW Blog Series. Retrieved December 3, 2020 from https://blog.ruuvi.com/bluetooth-beacon-density-maximum-92bcb947ee99.Google ScholarGoogle Scholar
  70. Malek Karaim, Mohamed Elsheikh, and Aboelmagd Noureldin. 2018. GNSS error sources. In Multifunction Operation and Application of GPS, R. B. Rustamov and A. M. Hashimov (Eds.). IntechOpen, London, UK, 69--85. DOI:https://doi.org/10.5772/intechopen.75493Google ScholarGoogle Scholar
  71. Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. 2017. Private set intersection for unequal set sizes with mobile applications. PoPETs 2017, 4 (2017), 177--197.Google ScholarGoogle Scholar
  72. Michael Klenk and Hein Duijf. 2020. Ethics of digital contact tracing and COVID-19: Who is (not) free to go? Ethics and Information Technology 2020 (2020), 1--9.Google ScholarGoogle Scholar
  73. Antti Kotanen, Marko Hännikäinen, Helena Leppäkoski, and Timo Hämäläinen. 2003. Experiments on local positioning with Bluetooth. In Proceedings of the 2003 International Conference on Information Technology: Coding and Computing (ITCC’03). IEEE, Los Alamitos, CA, 297--303.Google ScholarGoogle Scholar
  74. Mirjam E. Kretzschmar, Ganna Rozhnova, Martin C. J. Bootsma, Michiel van Boven, Janneke H. H. M. van de Wijgert, and Marc J. M. Bonten. 2020. Impact of delays on effectiveness of contact tracing strategies for COVID-19: A modelling study. Lancet Public Health 5, 8 (2020), e452--e459.Google ScholarGoogle Scholar
  75. Adam J. Kucharski, Petra Klepac, Andrew J. K. Conlan, Stephen M. Kissler, Maria L. Tang, Hannah Fry, Julia R. Gog, W. John Edmunds, CMMID COVID-19 Working Group. 2020. Effectiveness of isolation, testing, contact tracing and physical distancing on reducing transmission of SARS-CoV-2 in different settings. Lancet Infectious Diseases 20, 10 (2020), 1151--1160.Google ScholarGoogle Scholar
  76. Seungho Kuk, Junha Kim, Yongtae Park, and Hyogon Kim. 2018. Empirical determination of efficient sensing frequencies for magnetometer-based continuous human contact monitoring. Sensors 18, 5 (2018), 1358. DOI:https://doi.org/10.3390/s18051358Google ScholarGoogle Scholar
  77. James Larus et al. 2020. Joint Statement on Contact Tracing: Date 19th April 2020. Retrieved December 2, 2020 from https://www.esat.kuleuven.be/cosic/sites/contact-tracing-joint-statement/.Google ScholarGoogle Scholar
  78. Hui Liu, Houshang Darabi, Pat P. Banerjee, and Jing Liu. 2007. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37, 6 (2007), 1067--1080.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Jia Liu, Canfeng Chen, and Yan Ma. 2012. Modeling neighbor discovery in Bluetooth Low Energy networks. IEEE Communications Letters 16, 9 (2012), 1439--1441. DOI:https://doi.org/10.1109/LCOMM.2012.073112.120877Google ScholarGoogle ScholarCross RefCross Ref
  80. Joseph K. Liu, Man Ho Au, Tsz Hon Yuen, Cong Zuo, Jiawei Wang, Amin Sakzad, Xiapu Luo, and Li Li. 2020. Privacy-Preserving COVID-19 Contact Tracing App: A Zero-Knowledge Proof Approach. Report 2020/528. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  81. Shu Liu, Yingxin Jiang, and Aaron Striegel. 2013. Face-to-face proximity estimation using Bluetooth on smartphones. IEEE Transactions on Mobile Computing 13, 4 (2013), 811--823.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Shu Liu and Aaron Striegel. 2011. Accurate extraction of face-to-face proximity using smartphones and Bluetooth. In Proceedings of the 2011 20th International Conference on Computer Communications and Networks (ICCCN’11). IEEE, Los Alamitos, CA, 1--5.Google ScholarGoogle Scholar
  83. Lucien Loiseau, Vincent Bellet, Tony Sebastian Bento, Eliott Teissonniere, Micha Benoliel, Garrett Kinsman, and Philip Milne. 2020. Whisper Tracing Version 3 - An Open and Privacy First Protocol for Contact Tracing. Retrieved December 2, 2020 from https://docsend.com/view/nis3dac.Google ScholarGoogle Scholar
  84. Jackie Ma, David Neumann, Felix Sattler, Ralf Schafer, Patrick Wagner, and Thomas Wiegand. 2020. Proximity Tracing App - Report from the Measurement Campaign 2020-04-09. Retrieved December 2, 2020 from https://github.com/pepp-pt/pepp-pt-documentation/tree/master/12-proximity-measurement.Google ScholarGoogle Scholar
  85. Macworld. 2019. iPhone vs Android Market Share. Retrieved December 2, 2020 from https://www.macworld.co.uk/feature/iphone/iphone-vs-android-market-share-3691861/.Google ScholarGoogle Scholar
  86. Massachusetts Institute of Technology. 2020. Project: Safe Paths. Retrieved December 2, 2020 from https://www.media.mit.edu/projects/safepaths/overview/.Google ScholarGoogle Scholar
  87. Alessandro Montanari. 2015. Multimodal indoor social interaction sensing and real-time feedback for behavioural intervention. In Proceedings of the 2015 Workshop on Wireless of the Students, by the Students, & for the Students (S3’15). ACM, New York, NY, 7--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. 2011. Can homomorphic encryption be practical?. In Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop (CCSW’11). ACM, New York, NY, 113--124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Government of India. 2020. Aarogya Setu Mobile App. Retrieved December 2, 2020 from https://www.mygov.in/aarogya-setu-app/.Google ScholarGoogle Scholar
  90. Futoshi Naya, Haruo Noma, Ren Ohmura, and Kiyoshi Kogure. 2005. Bluetooth-based indoor proximity sensing for nursing context awareness. In Proceedings of the 9th IEEE International Symposium on Wearable Computers (ISWC’05). IEEE, Los Alamitos, CA, 212--213.Google ScholarGoogle Scholar
  91. Khuong An Nguyen, Chris Watkins, and Zhiyuan Luo. 2017. Co-location epidemic tracking on London public transports using low power mobile magnetometer. In Proceedings of the 2017 Indoor Positioning and Indoor Navigation Conference (IPIN’17). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  92. Rishab Nithyanand, Oleksii Starov, Phillipa Gill, Adva Zair, and Michael Schapira. 2016. Measuring and mitigating AS-level adversaries against Tor. In Proceedings of the 2016 Network and Distributed System Security Symposium (NDSS’16).Google ScholarGoogle Scholar
  93. Andrea Nuzzo, Can Ozan Tan, Ramesh Raskar, Daniel C. DeSimone, Suraj Kapa, and Rajiv Gupta. 2020. Universal shelter-in-place versus advanced automated contact tracing and targeted isolation: A case for 21st-century technologies for SARS-CoV-2 and future pandemics. Mayo Clinic Proceedings 95, 9 (2020), 1898--1905. DOI:https://doi.org/doi.org/10.1016/j.mayocp.2020.06.027Google ScholarGoogle Scholar
  94. Patrick Howell O’Neill. 2020. No, coronavirus apps don’t need 60% adoption to be effective. MIT Technology Review. Retrieved December 2, 2020 from https://www.technologyreview.com/2020/06/05/1002775/covid-apps-effective-at-less-than-60-percent-download/.Google ScholarGoogle Scholar
  95. PePP-PT e.V. i.Gr. 2020. PePP-PT Documentation. Retrieved December 2, 2020 from https://www.github.com/pepp-pt/pepp-pt-documentation.Google ScholarGoogle Scholar
  96. Krzysztof Pietrzak. 2020. Delayed Authentication: Preventing Replay and Relay Attacks in Private Contact Tracing. Report 2020/418. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  97. Benny Pinkas and Eyal Ronen. 2020. Hashomer Crypto Reference. Retrieved December 2, 2020 from https://github.com/eyalr0/HashomerCryptoRef.Google ScholarGoogle Scholar
  98. Presse- und Informationsamt der Bundesregierung. 2020. Corona-Warn-App: Frequently Asked Questions. Retrieved December 2, 2020 from https://www.bundesregierung.de/breg-de/themen/corona-warn-app/corona-warn-app-englisch/corona-warn-app-faq-1758636.Google ScholarGoogle Scholar
  99. Mimonah Al Qathrady, Ahmed Helmy, and Khalid Almuzaini. 2016. Infection tracing in smart hospitals. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking, and Communications (WiMob’16). IEEE, Los Alamitos, CA, 1--8.Google ScholarGoogle Scholar
  100. Aswin N. Raghavan, Harini Ananthapadmanaban, Manimaran Sivasamy Sivamurugan, and Balaraman Ravindran. 2010. Accurate mobile robot localization in indoor environments using Bluetooth. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA’10). IEEE, Los Alamitos, CA, 4391--4396.Google ScholarGoogle Scholar
  101. Ramesh Raskar, Ranu Dhillon, Suraj Kapa, Deepti Pahwa, Renaud Falgas, Lagnojita Sinha, Aarathi Prasad, et al. 2020. Comparing manual contact tracing and digital contact advice. arxiv:cs.CY/2008.07325Google ScholarGoogle Scholar
  102. Leonie Reichert, Samuel Brack, and Björn Scheuermann. 2020. Ovid: Message-Based Automatic Contact Tracing. Report 2020/1462. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  103. Leonie Reichert, Samuel Brack, and Björn Scheuermann. 2020. Privacy-preserving contact tracing of COVID-19 patients. Presented at the Poster Session at the 41st IEEE Symposium on Security and Privacy.Google ScholarGoogle Scholar
  104. Mohamed Er Rida, Fuqiang Liu, Yassine Jadi, Amgad Ali Abdullah Algawhari, and Ahmed Askourih. 2015. Indoor location position based on Bluetooth signal strength. In Proceedings of the 2015 2nd International Conference on Information Science and Control Engineering (ICISCE’15). IEEE, Los Alamitos, CA, 769--773.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Ronald Rivest, Daniel Weitzner, Louise Ivers, Israel Soibelman, and Marc Zissman. 2020. PACT: Private Automated Contact Tracing. Retrieved December 2, 2020 from https://pact.mit.edu/.Google ScholarGoogle Scholar
  106. Miguel Rodriguez, Juan P. Pece, and Carlos J. Escudero. 2005. In-building location using Bluetooth. In Proceedings of the 2005 International Workshop on Wireless Ad-Hoc Networks (IWWAN’05).Google ScholarGoogle Scholar
  107. Jilian A. Sacks, Elizabeth Zehe, Cindil Redick, Alhoussaine Bah, Kai Cowger, Mamady Camara, Aboubacar Diallo, Abdel Nasser Iro Gigo, Ranu S. Dhillon, and Anne Liu. 2015. Introduction of mobile health tools to support Ebola surveillance and contact tracing in guinea. Global Health: Science and Practice 3, 4 (2015), 646--659.Google ScholarGoogle ScholarCross RefCross Ref
  108. Sanjay Sareen, Sandeep K. Sood, and Sunil Kumar Gupta. 2018. IoT-based cloud framework to control Ebola virus outbreak. Journal of Ambient Intelligence and Humanized Computing 9, 3 (2018), 459--476. DOI:https://doi.org/10.1007/s12652-016-0427-7Google ScholarGoogle ScholarCross RefCross Ref
  109. Felix Sattler, Jackie Ma, Patrick Wagner, David Neumann, Markus Wenzel, Ralf Shafer, Wojciech Samek, Klaus-Robert Muller, and Thomas Wiegand. 2020. Risk estimation of SARS-CoV-2 transmission from Bluetooth Low Energy measurements. npj Digital Medicine 16, 3 (2020), 129. doi.org/10.1038/s41746-020-00340-0Google ScholarGoogle Scholar
  110. James Scott, Pan Hui, Jon Crowcroft, and Christophe Diot. 2006. Haggle: A networking architecture designed around mobile users. In Proceedings of the 2006 3rd Annual Conference on Wireless On Demand Network Systems and Services (WONS’06).Google ScholarGoogle Scholar
  111. Hyonhee Shin and Josh Smith. 2020. South Korea scrambles to contain nightclub coronavirus outbreak. Reuters. Retrieved December 2, 2020 from https://www.reuters.com/article/us-health-coronavirus-southkorea/south-korea-scrambles-to-contain-nightclub-coronavirus-outbreak-idUSKBN22N0DA.Google ScholarGoogle Scholar
  112. Selena Simmons-Duffin and Robert Stein. 2020. CDC Director: ‘Very Aggressive’ Contact Tracing Needed for U.S. to Return to Normal. Retrieved December 2, 2020 from https://www.npr.org/sections/health-shots/2020/04/10/831200054.Google ScholarGoogle Scholar
  113. Natasha Singer and Choe Sang-Hun. 2020. As Coronavirus Surveillance Escalates, Personal Privacy Plummets. Retrieved December 2, 2020 from https://www.nytimes.com/2020/03/23/technology/coronavirus-surveillance-tracking-privacy.html.Google ScholarGoogle Scholar
  114. Nigel P. Smart. 2016. Cryptography Made Simple. Springer, Cham, Switzerland.Google ScholarGoogle Scholar
  115. Chanjuan Sun and Zhiqiang Zhai. 2020. The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustainable Cities and Society 62 (2020), 102390. DOI:https://doi.org/doi.org/10.1016/j.scs.2020.102390Google ScholarGoogle Scholar
  116. The Directorate of Health and the Department of Civil Protection and Emergency Management. 2020. Join the Tracing Team! Contagion Tracing Is a Community Affair. Retrieved December 2, 2020 from https://www.covid.is/app/en.Google ScholarGoogle Scholar
  117. The MITRE Corporation. 2020. CVE-2020-0022. Retrieved December 2, 2020 from cve.mitre.org/cgi-bin/cvename.cgi?name--CVE-2020-0022.Google ScholarGoogle Scholar
  118. The New York Times. 2020. Lockdowns in France and U.K. Expected to Last into Next Month. Retrieved December 2, 2020 from https://www.nytimes.com/2020/04/13/world/coronavirus-news-world-international-global.html.Google ScholarGoogle Scholar
  119. The New York Times. 2020. To Track Coronavirus, Israel Moves to Tap Secret Trove of Cellphone Data. Retrieved December 2, 2020 from https://www.nytimes.com/2020/03/16/world/middleeast/israel-coronavirus-cellphone-tracking.html?referringSource--articleShare.Google ScholarGoogle Scholar
  120. Simon Trang, Manuel Trenz, Welf H. Weiger, Monideepa Tarafdar, and Christy M. K. Cheung. 2020. One app to trace them all? Examining app specifications for mass acceptance of contact-tracing apps. European Journal of Information Systems 29, 4 (2020), 1--14. DOI:https://doi.org/10.1080/0960085X.2020.1784046Google ScholarGoogle ScholarCross RefCross Ref
  121. Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020. Epione: Lightweight contact tracing with strong privacy. arXiv:2004.13293Google ScholarGoogle Scholar
  122. Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathe, James Larus, Edouard Bugnion, Wouter Lueks, et al. 2020. Decentralized Privacy-Preserving Proximity Tracing. Retrieved December 2, 2020 from https://github.com/DP-3T/documents.Google ScholarGoogle Scholar
  123. Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathe, James Larus, Edouard Bugnion, Wouter Lueks, et al. 2020. Decentralized Privacy-Preserving Proximity Tracing - Version: 25 May 2020. Retrieved December 2, 2020 from https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf.Google ScholarGoogle Scholar
  124. Jason Uher, Ryan G. Mennecke, and Bassam S. Farroha. 2016. Denial of sleep attacks in Bluetooth Low Energy wireless sensor networks. In Proceedings of the 2016 IEEE Military Communications Conference (MILCOM’16). IEEE, Los Alamitos, CA, 1231--1236.Google ScholarGoogle Scholar
  125. Serge Vaudenay. 2020. Analysis of DP3T. Report 2020/399. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  126. Serge Vaudenay. 2020. Centralized or Decentralized? The Contact Tracing Dilemma. Report 2020/531. Cryptology ePrint Archive.Google ScholarGoogle Scholar
  127. Victorian Society for Computers & the Law Inc. 2020. 15 May Explainer: The COVIDSafe App. Retrieved December 2, 2020 from https://www.vscl.org.au/explainer-the-covidsafe-app/.Google ScholarGoogle Scholar
  128. Glenn Webb, Cameron Browne, Xi Huo, Ousmane Seydi, Moussa Seydi, and Pierre Magal. 2015. A model of the 2014 Ebola epidemic in West Africa with contact tracing. PLoS Currents 7 (2015), 25685636.Google ScholarGoogle Scholar
  129. Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. 2005. The feasibility of launching and detecting jamming attacks in wireless networks. In Proceedings of the 6th ACM International Symposium on Mobile Ad hoc Networking and Computing. 46--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Eiko Yoneki. 2011. FluPhone study: Virtual disease spread using Haggle. In Proceedings of the 2011 6th ACM Workshop on Challenged Networks (CHANTS’11). ACM, New York, NY, 65--66.Google ScholarGoogle Scholar
  131. Kuan Zhang, Xiaohui Liang, Jianbing Ni, Kan Yang, and Xuemin Sherman Shen. 2018. Exploiting social network to enhance human-to-human infection analysis without privacy leakage. IEEE Transactions on Dependable and Secure Computing 15, 4 (2018), 607--620.Google ScholarGoogle ScholarCross RefCross Ref
  132. Zhaoyang Zhang, Honggang Wang, Xiaodong Lin, Hua Fang, and Dong Xuan. 2013. Effective epidemic control and source tracing through mobile social sensing over WBANs. In Proceedings of IEEE INFOCOM. IEEE, Los Alamitos, CA, 300--304.Google ScholarGoogle Scholar
  133. Sheng Zhou and John K. Pollard. 2006. Position measurement using Bluetooth. IEEE Transactions on Consumer Electronics 52, 2 (2006), 555--558.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Survey of Automatic Contact Tracing Approaches Using Bluetooth Low Energy

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Computing for Healthcare
            ACM Transactions on Computing for Healthcare  Volume 2, Issue 2
            April 2021
            226 pages
            EISSN:2637-8051
            DOI:10.1145/3446675
            Issue’s Table of Contents

            Copyright © 2021 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 17 March 2021
            • Revised: 1 December 2020
            • Accepted: 1 December 2020
            • Received: 1 June 2020
            Published in health Volume 2, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format