Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:06:28.496Z Has data issue: false hasContentIssue false

16 - ET: A third generation observatory

from Part 4 - Technology for third generation gravitational wave detectors

Published online by Cambridge University Press:  05 March 2012

M. Punturo
Affiliation:
Istituto Nazionale di Fisica Nucleare (INFN)
H. Lück
Affiliation:
Leibniz Universität Hannover
D. G. Blair
Affiliation:
University of Western Australia, Perth
E. J. Howell
Affiliation:
University of Western Australia, Perth
L. Ju
Affiliation:
University of Western Australia, Perth
C. Zhao
Affiliation:
University of Western Australia, Perth
Get access

Summary

Plans for a third generation interferometric gravitational wave (GW) detector are epitomised by the Einstein Telescope proposal. We start by describing the motivation for building third generation instruments, followed by a description of the different science objectives that can be achieved by such an observatory. In the next section we discuss the technological challenges that must be met to achieve third generation sensitivities. The final section outlines a possible timeline for the development of this detector and various detector configurations that are being considered.

Introduction to the third generation of GW observatories

As described in the previous chapters and based on the current models of GW sources, the next generation of advanced interferometric GW detectors (the ‘second’ generation of GW interferometers, such as ‘Advanced LIGO'and ‘Advanced Virgo’) promise the detection of GW in the first year of operation close to the target sensitivity. For example, at the nominal sensitivity of these apparatuses, it is expected that a few tens of coalescing neutron stars will be detected each year. But, apart from extremely rare events, the expected signal-to-noise ratio (SNR) of these events, in the advanced detectors, is too low for precise astronomical studies of the GW sources and for complementing optical and X-ray observations in the study of fundamental systems and processes in the Universe.

These evaluations and the need for observational precision in GW astronomy have led the GW community to start a long investigative process into the future evolution of advanced detectors to a new (‘third’) generation of apparatuses (Punturo et al., 2009), with a considerably improved sensitivity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • ET: A third generation observatory
    • By M. Punturo, Istituto Nazionale di Fisica Nucleare (INFN), H. Lück, Leibniz Universität Hannover
  • Edited by D. G. Blair, University of Western Australia, Perth, E. J. Howell, University of Western Australia, Perth, L. Ju, University of Western Australia, Perth, C. Zhao, University of Western Australia, Perth
  • Book: Advanced Gravitational Wave Detectors
  • Online publication: 05 March 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046916.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • ET: A third generation observatory
    • By M. Punturo, Istituto Nazionale di Fisica Nucleare (INFN), H. Lück, Leibniz Universität Hannover
  • Edited by D. G. Blair, University of Western Australia, Perth, E. J. Howell, University of Western Australia, Perth, L. Ju, University of Western Australia, Perth, C. Zhao, University of Western Australia, Perth
  • Book: Advanced Gravitational Wave Detectors
  • Online publication: 05 March 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046916.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • ET: A third generation observatory
    • By M. Punturo, Istituto Nazionale di Fisica Nucleare (INFN), H. Lück, Leibniz Universität Hannover
  • Edited by D. G. Blair, University of Western Australia, Perth, E. J. Howell, University of Western Australia, Perth, L. Ju, University of Western Australia, Perth, C. Zhao, University of Western Australia, Perth
  • Book: Advanced Gravitational Wave Detectors
  • Online publication: 05 March 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046916.019
Available formats
×