Skip to main content

Finding Strong Bridges and Strong Articulation Points in Linear Time

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6508))

Abstract

Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected components of G. In this paper, we present linear-time algorithms for computing all the strong bridges and all the strong articulation points of directed graphs, solving an open problem posed in [2].

This work has been partially supported by the 7th Framework Programme of the EU (Network of Excellence “EuroNF: Anticipating the Network of the Future - From Theory to Design”) and by MIUR, the Italian Ministry of Education, University and Research, under Project AlgoDEEP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 64–78. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal on Computing 38(4), 1533–1573 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: A new, simpler linear-time dominators algorithm. ACM Trans. Program. Lang. Syst. 20(6), 1265–1296 (1998)

    Article  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Edmonds, J.: Edge-disjoint branchings. In: Proceedings of the 9th Courant Computer Science Symposium, Combinatorial Algorithms, pp. 91–96. Algorithmics Press (1972)

    Google Scholar 

  7. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure. In: Proceedings of 12th FOCS, pp. 129–131. IEEE, Los Alamitos (1971)

    Google Scholar 

  8. Furman, M.E.: Applications of a method of fast multiplication of matrices in the problem of finding the transitive closure of a graph. Soviet Math. Dokl. 11(5), 1252 (1970)

    MATH  Google Scholar 

  9. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci. 50(2), 259–273 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30(2), 209–221 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Georgiadis, L.: Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs. In: ICALP 2010: Proceedings of the 37th International Colloquium on Automata, Languages and Programming, pp. 433–442 (2010)

    Google Scholar 

  12. Munro, I.: Efficient determination of the transitive closure of a directed graph. Inform. Process. Lett. 1(2), 56–58 (1971)

    Article  MATH  Google Scholar 

  13. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Inf. 6, 171–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Volkmann, L.: Restricted arc-connectivity of digraphs. Inf. Process. Lett. 103(6), 234–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Italiano, G.F., Laura, L., Santaroni, F. (2010). Finding Strong Bridges and Strong Articulation Points in Linear Time. In: Wu, W., Daescu, O. (eds) Combinatorial Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science, vol 6508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17458-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17458-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17457-5

  • Online ISBN: 978-3-642-17458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics