Date Awarded

1995

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Virginia Institute of Marine Science

Advisor

Joel S. Levine

Abstract

A numerical model of the global carbon cycle is presented which includes the effects of anthropogenic &CO\sb2& emissions &(CO\sb2& produced from fossil fuel combustion, biomass burning, and deforestation) on the global carbon cycle. The model is validated against measured atmospheric &CO\sb2& concentrations. Future levels of atmospheric &CO\sb2& are then predicted for the following scenarios: (1) Business as Usual (BaU) for the period 1990-2000; (2) Same as (1), but with no biomass burning; (3) Same as (1), but with no fossil fuel combustion; (4) Same as (1), but with a doubled atmospheric &CO\sb2& concentration and a 2 K warmer surface temperature associated with the doubled atmospheric &CO\sb2& concentration. The global model presented here consists of four different modules which are fully coupled with respect to &CO\sb2.& These modules represent carbon cycling by the terrestrial biosphere and the ocean, anthropogenic &CO\sb2& emissions, and atmospheric transport of &CO\sb2.&. The prognostic variable of interest is the atmospheric &CO\sb2& concentration field. The &CO\sb2& concentration field depends on both the sources and sinks of &CO\sb2& as well as the atmospheric circulation. In addition, the sources and sinks vary significantly as a function of both time and geographic location. The model output agrees well with measured data at the equatorial and mid latitudes, but this agreement weakens at higher latitudes. This is due to the less adequate representation of the terrestrial ecosystem models at these latitudes. In the first scenario, the predicted concentration of atmospheric &CO\sb2& is 362 parts per million by volume (ppmv) at the end of the 10 year model run. This establishes a baseline for the next three scenarios, which predict that biomass burning will contribute 3 ppmv of &CO\sb2& to the atmosphere by the year 2000, while fossil fuel combustion will contribute 5 ppmv. The net effect of a 2 K average global warming was to increase the atmospheric &CO\sb2& concentration by approximately 1 ppmv, due to enhanced respiration by the terrestrial biosphere.

DOI

https://dx.doi.org/doi:10.25773/v5-rk5w-j211

Rights

© The Author

Share

COinS