Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-23T11:05:06.249Z Has data issue: false hasContentIssue false

A Green River (Eocene) polychrotid (Squamata: Reptilia) and a re-examination of iguanian systematics

Published online by Cambridge University Press:  14 July 2015

Jack L. Conrad
Affiliation:
Department of Vertebrate Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 USA,
Olivier Rieppel
Affiliation:
Department of Geology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605 USA, ,
Lance Grande
Affiliation:
Department of Geology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605 USA, ,

Abstract

A pleurodontan iguanian from the Green River Formation (Eocene) is described in detail and named. The new taxon is known only from a single specimen preserving all areas of the body. Although many of the bone surfaces are eroded, almost all of the skeleton is present and some cartilaginous elements are preserved. The new taxon shares important characteristics with the extant anisolepines and leiosaurines, including the morphology and placement of the caudal autotomy planes, the postxiphisternal inscriptional ribs, and notched or fenestrated clavicles that are expanded proximally. This is the earliest complete iguanian known from the Americas and the earliest known iguanian that may be confidently referred to an extant “family.” A phylogenetic analysis including this taxon and other fossil and extant iguanians offers some support for the monophyly of Polychrotidae sensu lato, Tropiduridae sensu lato, and non-acrodont iguanians (Pleurodonta).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdala, V. and Moro, S. A. 2003. A cladistic analysis of ten lizards families (Reptilia: Squamata) based on cranial musculature. Russian Journal of Herpetology, 10(1):5378.Google Scholar
Alifanov, V. R. 1989. New priscagamids (Lacertilia) from the Upper Cretaceous of Mongolia and their systematic postion among Iguania. Paleontological Journal, 1989(4):6880.Google Scholar
Alifanov, V. R. 1996. Lizard families Priscagamidae and Hoplocercidae (Sauria, Iguania): Phylogenetic position and new representatives from the Late Cretaceous of Mongolia. Paleontological Journal, 1996(3):100118.Google Scholar
Bell, G. L. Jr. 1997. A phylogenetic revision of North American and Adriatic Mosasauroidea. In Callaway, J. M. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Volume 293–332. Academic Press, San Diego.Google Scholar
Bell, T. 1843. The Zoology of the Voyage of the H.M.S. Beagle, Under the Command of Captain Fitzroy, R.N., During the Years 1832-1836, Pt. 5, Reptiles. Smith, Elder, and Co., London, 51 p.Google Scholar
Berthold, A. A. 1845. Über verschiedene neue oder seltene Reptilien aus Neu Granada und Crustaceen aus China. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, 3:1828.Google Scholar
Borsuk-Białynicka, M. 1983. The early phylogeny of Anguimorpha as implicated by craniological data. Acta Palaeontologica Polonica, 28(1-2):5105.Google Scholar
Borsuk-Białynicka, M. and Alifanov, V. R. 1991. First Asiatic ‘iguanid’ lizards in the Late Cretaceous of Mongolia. Acta Palaeontologica Polonica, 36(3):325342.Google Scholar
Borsuk-Białynicka, M. and Moody, S. M. 1984. Priscagaminae, a new subfamily of the Agamidae (Sauria) from the Late Cretaceous of the Gobi Desert. Acta Palaeontologica Polonica, 29(1-2):5181.Google Scholar
Branch, W. R. 1982. Hemipeneal morphology of platynotan lizards. Journal of Herpetology, 16(1):1638.CrossRefGoogle Scholar
Buchheim, H. P. 1994. Paleoenvironments, lithofacies and “varves” of the Fossil Butte Member of the Eocene Green River Formation, southwestern Wyoming. Contributions to Geology, University of Wyoming, 30(1):314.Google Scholar
Caldwell, M. W. 1999. Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125:115147.CrossRefGoogle Scholar
Conrad, J. L. 2006. An Eocene shinisaurid (Reptilia, Squamata) from Wyoming, U.S.A. Journal of Vertebrate Paleontology, 26(1):113126.CrossRefGoogle Scholar
Conrad, J. L. and Norell, M. A. 2006. High-resolution x-ray computed tomography of an Early Cretaceous gekkonomorph (Squamata) from Öösh (Övörkhangai; Mongolia). Historical Biology, PrEview, online publication date May 18: http://taylorandfrancis.metapress.com/link.asp?id=50y51qutjte56cc.CrossRefGoogle Scholar
Cope, E. D. 1864. On the characters of the higher groups of Reptilia Squamata—and especially of the Diploglossa. Proceedings of the Academy of Natural Sciences of Philadelphia, 16:224231.Google Scholar
Cope, E. D. 1873. Synopses of new Vertebrata from the Tertiary of the plains. Palaeontological Bulletin, 15:16.Google Scholar
Cope, E. D. 1885. The White River beds of Swift Current River, Northwest Territory. American Naturalist, 19:163.Google Scholar
DeBraga, M. and Carroll, R. L. 1993. The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evolutionary Biology, 27:245322.Google Scholar
de Queiroz, K., Ling-Ru, C., and Losos, J. B. 1998. A second Anolis lizard in Dominican amber and the systematics and ecological morphology of Dominican amber anoles. American Museum Novitates, 3249:123.Google Scholar
Dingerkus, G. and Uhler, L. D. 1977. Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technology, 52:229232.CrossRefGoogle ScholarPubMed
Estes, R. 1964. Fossil vertebrates from the Late Cretaceous Lance Formation eastern Wyoming. University of California Publications in Geological Sciences, 49:1180.Google Scholar
Estes, R. 1983. Sauria Terrestria, Amphisbaenia, 10. Gustav Fischer Verlag, New York, 249 p.Google Scholar
Estes, R., de Queiroz, K., and Gauthier, J. 1988. Phylogenetic relationships within Squamata, p. 119281. In Estes, R. and Pregill, G. (eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford.Google Scholar
Etheridge, R. and de Queiroz, K. 1988. A phylogeny of Iguanidae, p. 283367. In Estes, R. and Pregill, G. (eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford.Google Scholar
Evans, S. E. 1980. The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zoological Journal of the Linnean Society, 70:203264.CrossRefGoogle Scholar
Evans, S. E. 1994. A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology, 37(1):3349.Google Scholar
Evans, S. E. 1998. Crown group lizards (Reptilia, Squamata) from the Middle Jurassic of the British Isles. Palaeontographica; Beiträge zur Naturgeschichte der Vorzeit, Abt. A, 250:123154.CrossRefGoogle Scholar
Evans, S. E. 2003. At the feet of the dinosaurs: The early history and radiation of lizards. Biological Reviews, 78(4):513551.CrossRefGoogle ScholarPubMed
Evans, S. E. and Barbadillo, L. J. 1998. An unusual lizard (Reptilia: Squamata) from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society, 124:235265.CrossRefGoogle Scholar
Fitzinger, L. J. 1843. Systema Reptilium (Fasiculus primus). Amblyglossae. Vindobonae, Apud Braumüller, and Seidel, Vienna, 106 p.Google Scholar
Frost, D. R. and Etheridge, R. 1989. A phylogenetic analysis and taxonomy of iguanian lizards (Reptilia: Squamata). University of Kansas Museum of Natural History, Miscellaneous Publications, 81:165.Google Scholar
Frost, D. R., Etheridge, R., Janies, D., and Titus, T. A. 2001. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). American Museum Novitates, 3343:138.2.0.CO;2>CrossRefGoogle Scholar
Gao, K.-Q. and Fox, R. C. 1996. Taxonomy and evolution of Late Cretaceous lizards (Reptilia: Squamata) from western Canada. Bulletin of Carnegie Museum of Natural History, 33:1107.CrossRefGoogle Scholar
Gao, K.-Q. and Hou, L. 1995. Iguanians from the Upper Cretaceous Djadochta Formation, Gobi Desert, China. Journal of Vertebrate Paleontology, 15(1):5778.Google Scholar
Gao, K.-Q. and Hou, L. 1996. Systematics and taxonomic diversity of squamates from the Upper Cretaceous Djadochta Formation, Bayan Manahu, Gobi Desert, People's Republic of China. Canadian Journal of Earth Sciences, 33(4):578598.CrossRefGoogle Scholar
Gao, K.-Q. and Nessov, L. A. 1998. Early Cretaceous squamates from the Kyzylkum Desert, Uzbekistan. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 207(3):289309.CrossRefGoogle Scholar
Gao, K.-Q. and Norell, M. A. 1998. Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert and phylogenetic relationships of anguimorphan lizards. American Museum Novitates, 3230:1-5(1)Google Scholar
Gao, K.-Q. and Norell, M. A. 2000. Taxonomic composition and systematics of Late Cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities, Mongolian Gobi Desert. Bulletin of the American Museum of Natural History, 249:1118.Google Scholar
Gauthier, J. A. 1982. Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of the Anguioidea. Contributions to Geology, University of Wyoming, 21(7):754.Google Scholar
Gauthier, J. A., Estes, R., and de Queiroz, K. 1988. A phylogenetic analysis of Lepidosauromorpha. In Estes, R. and Pregill, G. (eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford.Google Scholar
Gilmore, C. W. 1938. Descriptions of new and little known fossil lizards from North America. Proceedings of the United States National Museum, 86(3042):1126.CrossRefGoogle Scholar
Gilmore, C. W. 1943. Fossil lizards of Mongolia. Bulletin of the American Museum of Natural History, 81:361384.Google Scholar
Grande, L. 1984. Paleontology of the Green River Formation, with a review of the fish fauna. Geological Survey of Wyoming, Bulletin, 63:1133.Google Scholar
Grande, L. 1994. Studies of paleoenvironments and historical biogeography in the Fossil Butte and Laney Members of the Green River Formation. Contributions to Geology, University of Wyoming, 30(1):1532.Google Scholar
Grande, L. 2001. An updated review of the fish faunas from the Green River Formation, the world's most productive freshwater Lagerstatten, p. 138. In Gunnell, G. F. (ed.), Eocene Biodiversity: Unusual occurrences and rarely sampled habitats. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Grande, L. and Buchheim, H. P. 1994. Paleontological and sedimentological variation in Early Eocene fossil lake. Contributions to Geology, University of Wyoming, 30(1):3356.Google Scholar
Gray, J. E. 1827. A synopsis of the genera of saurian reptiles, in which some new genera are indicated and the others reviewed by actual examination. Annals of Philosophy, New Series, 2(2):5458.Google Scholar
Greer, A. E. 1985. The relationships of the lizard genera Anelytropsis and Dibamus. Journal of Herpetology, 19(1):116156.CrossRefGoogle Scholar
Hanken, J. and Wassersug, R. 1981. The visible skeleton. Functional Photography, 16:2226.Google Scholar
Harvey, M. B. 1993. Microstructure, ontogeny, and evolution of scale surfaces in xenosaurid lizards. Journal of Morphology, 216:161177.CrossRefGoogle ScholarPubMed
Hoffstetter, R. 1967. Coup d'oeil sur les Sauriens (lacertiliens) des couches de Purbeck (Jurassique supérieur d'Angleterre Résumé d'un Mémoire). Colloques Internationaux du Centre National de la Recherche Scientifique, 163:349371.Google Scholar
Kearney, M. 2003. Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent fossil forms. Herpetological Monographs, 17:174.CrossRefGoogle Scholar
Kluge, A. G. 1967. Higher taxonomic categories of gekkonid lizards and their evolution. Bulletin of the American Museum of Natural History, 135(1):160.Google Scholar
Kluge, A. G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Miscellaneous Publications: Museum of Zoology, University of Michigan, 173:154.Google Scholar
Lazell, J. D. Jr. 1965. An Anolis (Sauria, Iguanidae) in amber. Journal of Paleontology, 39(3):379382.Google Scholar
Lee, M. S. Y. 1998. Convergent evolution and character correlation in burrowing reptiles: Towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65:369453.CrossRefGoogle Scholar
Lee, M. S. Y. and Caldwell, M. W. 2000 Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes. Journal of Paleontology, 74(5):915937.2.0.CO;2>CrossRefGoogle Scholar
Leidy, J. 1870 (Description of Emys jeansi, E. haydeni, Bàëna arenosa, and Saniwa ensidens). Proceedings of the Academy of Natural Science, Philadelphia, 1870:123124.Google Scholar
Macey, J. R., Larson, A., Ananjeva, N. B., and Papenfuss, T. J. 1997. Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. Journal of Molecular Evolution, 44:660674.CrossRefGoogle ScholarPubMed
McDowell, S. B. Jr. and Bogert, C. M. 1954. The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105(1):1142.Google Scholar
Norell, M. and Gao, K.-Q. 1997. Braincase and phylogenetic relationships of Estesia mongoliensis from the Late Cretaceous of the Gobi Desert and the recognition of a new clade of lizards. American Museum Novitates, 3211:125.Google Scholar
Oppel, M. 1811. Die Ordnungen, Familien, und Gattungen der Reptilien als Prodrom einer Naturgeschichte Derselben. Joseph Lindauer, München, 86 p.CrossRefGoogle Scholar
Polcyn, M. J., Rogers, J. V. II, Kobayashi, Y., and Jacobs, L. L. 2002. Computed tomography of an Anolis lizard in Dominican amber: Systematic, taphonomic, biogeographic, and evolutionary implications. Palaeontologia Electronica, 5(1):113.Google Scholar
Potthoff, T. 1984. Clearing and staining techniques, p. 3537. In Moser, H. G., Richards, W. J., Cohen, D. M., Fahay, M. P., Kendall, A. W. Jr., and Richardson, S. L. (eds.), Ontogeny and Systematics of Fishes. Volume 1. American Society of Ichthyologists and Herpetologists Special Publication, Lawrence.Google Scholar
Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H., and Wells, K. D. 2001. Herpetology. Prentice Hall, Upper Saddle River, 612 p.Google Scholar
Pregill, G. K., Gauthier, J. A., and Greene, H. W. 1986. The evolution of helodermatid squamates, with description of a new taxon and an overview of Varanoidea. Transactions of the San Diego Society of Natural History, 21:167202.Google Scholar
Renous-Lécuru, S. 1968. Etude des variations morphologiques du sternum, des clavicules et de l'interclavicule des lacertiliens. Annales des Sciences Naturelles, Zoologie, Paris, 10:511544.Google Scholar
Rieppel, O. 1980a. Green anole in Dominican amber. Nature, 286:486487.CrossRefGoogle Scholar
Rieppel, O. 1980b. The Phylogeny of Anguinimorph Lizards. Naturforschenden Gesellshaft, Basel, 86 p.CrossRefGoogle Scholar
Rieppel, O. 1980c. The postcranial skeleton of Lanthanotus borneensis (Reptilia, Lacertilia). Amphibia-Reptilia, 1:95112.CrossRefGoogle Scholar
Rieppel, O. 1994. The Lepidosauromorpha: An overview with special emphasis on the Squamata, p. 2337. In Fraser, N. C. and Sues, H.-D. (eds.), In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, Cambridge.Google Scholar
Rieppel, O. and Zaher, H. 2000. The braincases of mosasaurs and Varanus, and the relationships of snakes. Zoological Journal of the Linnean Society, 129(4):489514.CrossRefGoogle Scholar
Rossmann, T. 1999. Messelosaurine lacertilians (Squamata: Iguanoides) from the Pelaeogene of France and North America. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1999(10):577592.CrossRefGoogle Scholar
Rossmann, T. 2000. Osteologische Beschreibung von Geiseltaliellus longicaudus Kuhn, 1944 (Squamata: Iguanoidea) aus dem Mittleren Eozän der Fossillagerstätten Geiseltal und Grube Messel (Deutschland), mit einer Revision der Gattung Geiseltaliellus. Palaeontographica Abteilung a Palaeozoologie Stratigraphie, 258(4-6):117158.CrossRefGoogle Scholar
Rossmann, T. 2001. Geiseltaliellus longicaudus Kuhn (Lacertilia: Iguanoidea) aus dem Eozän von Mitteleuropa: Neue Erkenntnisse zur Paläobiologie und Paläobiogeographie [Geiseltaliellus longicaudus Kuhn (Lacertilia: Iguanoidea) from the Eocene of central Europe: New palaeobiological and palaeobiogeographical results]. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 221(1):133.CrossRefGoogle Scholar
Schulte, J. A. II, Valladares, J. P., and Larson, A. 2003. Phylogenetic relationships within Iguanidae inferred using molecular and morphological data and a phylogenetic taxonomy of iguanian lizards. Herpetologica, 59(3):399419.CrossRefGoogle Scholar
Schwenk, K. 1988. Comparative morphology of the lepidosaur tongue and its relevance to squamate phylogeny, p. 569597. In Estes, R. and Pregill, G. (eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford.Google Scholar
Swofford, D. L. 2001. PAUP. Smithsonian Institution, Washington, DC.Google Scholar
Titus, T. A. and Frost, D. R. 1996. Molecular homology assessment and phylogeny in the lizard family Opluridae (Squamata: Iguania). Molecular Phylogenetics and Evolution, 6(1):4962.CrossRefGoogle ScholarPubMed
Torres-Carvajal, O. 2004. The abdominal skeleton of tropidurid lizards (Squamata: Tropiduridae). Herpetologica, 60(1):7583.CrossRefGoogle Scholar
Townsend, T. M., Larson, A., Louis, E., and Macey, J. R. 2004. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53(5):735757.CrossRefGoogle ScholarPubMed
Uetz, P. 2005. The EMBL Reptile Database. European Molecular Biology Laboratory, Heidelberg. http://www.embl-heidelberg.de/~uetz/livingreptiles.html.Google Scholar
Vidal, N. and Hedges, S. B. 2004. Molecular evidence for a terrestrial origin of snakes. Proceedings of the Royal Society of London: series B (biological sciences), 271 (suppl.):S226S229.Google ScholarPubMed
Voigt, L. 1832. p. 71, Das Thierreich von Cuvier, übersetz und durch Zusätze erweitert. Leipzig. Volume 2.Google Scholar
Whiteside, D. I. 1986. The head skeleton of the Rhaetian Sphenodontid Diphydontosaurus avonis gen. et sp. nov. and the modernizing of a living fossil. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 312:379430.Google Scholar