Skip to main content
Log in

Indentation fracture of low-dielectric constant films: Part II. Indentation fracture mechanics model

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Part I [D.J. Morris and R.F. Cook, J. Mater. Res.23, 2429 (2008)] of this two-part work explored the instrumented indentation and fracture phenomena of compliant, low-dielectric constant (low-κ) films on silicon substrates. The effect of film thickness and probe acuity on the fracture response, as well as the apparent connection of this response to the perceived elastic modulus, were demonstrated. These results motivate the creation of a fracture model that incorporates all of these variables here in Part II. Indentation wedging is identified as the mechanism that drives radial fracture, and a correction is introduced that adjusts the wedging strength of the probe for the attenuating influence of the relatively stiff substrate. An estimate of the film fracture toughness can be made if there is an independent measurement of the film stress; if not, a critical film thickness for channel-cracking under the influence of film stress may be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
TABLE I.
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
TABLE II.
TABLE III.
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. D.J. Morris R.F. Cook: Indentation fracture of low-dielectric constant films: Part I. Experiments and observations. J. Mater. Res. 23(9), 2429 2008

    Article  Google Scholar 

  2. D.J. Morris R.F. Cook: Radial fracture during indentation by acute probes: I. Description by an indentation wedging model. Int. J. Fract. 136, 237 2005

    Article  Google Scholar 

  3. B.R. Lawn: Fracture of Brittle Solids Cambridge University Press Cambridge, UK 1993

    Book  Google Scholar 

  4. G.R. Anstis, P. Chantikul, B.R. Lawn D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness. I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533 1981

    Article  CAS  Google Scholar 

  5. D.M. Marsh: Plastic flow and fracture of glass. Proc. R. Soc. London A 282 1965

  6. A. Arora, D.B. Marshall, B.R. Lawn M.V. Swain: Indentation deformation/fracture of normal and anomalous glasses. J. Non-Cryst. Solids 31, 415 1979

    Article  CAS  Google Scholar 

  7. R.F. Cook G.M. Pharr: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 1990

    Article  CAS  Google Scholar 

  8. D.J. Morris, S.B. Myers R.F. Cook: Sharp probes of varying acuity: Instrumented indentation and fracture behavior. J. Mater. Res. 19, 165 2004

    Article  CAS  Google Scholar 

  9. D.J. Morris, A.M. Vodnick R.F. Cook: Radial fracture during indentation by acute probes: II, Experimental observations of cube-corner and vickers indentation. Int. J. Fract. 136, 265 2005

    Article  CAS  Google Scholar 

  10. G.M. Pharr, D.S. Harding W.C. Oliver: Measurement of fracture toughness in thin films and small volumes using nanoindentation methods in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by M. Nastasi, D.M. Parkin, and H. Gleiter (NATO ASI, Boston, MA, 1993) p. 449

    Chapter  Google Scholar 

  11. D.J. Morris R.F. Cook: In situ cube-corner indentation of soda-lime glass and fused silica. J. Am. Ceram. Soc. 87, 1494 2004

    Article  CAS  Google Scholar 

  12. H. Tada, P.C. Paris G.R. Irwin: The Stress Analysis of Cracks Handbook ASME Press New York 2000

    Book  Google Scholar 

  13. H. Gao, C-H. Chiu J. Lee: Elastic contact versus indentation modeling of multi-layered materials. Int. J. Solids Struct. 29, 2471 1992

    Article  Google Scholar 

  14. H. Xu G.M. Pharr: An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch. Scr. Mater. 55, 315 2006

    Article  CAS  Google Scholar 

  15. J. Mencik, D. Munz, E. Quandt, E.R. Weppelmann M.V. Swain: Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12, 2475 1997

    Article  CAS  Google Scholar 

  16. H. Song, G.M. Pharr A. Rar: Assessment of new relation for the elastic compliance of a film-substrate system in Thin Films: Stresses and Mechanical Properties I, edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), p. 431

  17. J.L. Beuth: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 1992

    Article  Google Scholar 

  18. A.R. Zak M.L. Williams: Crack point singularities at a bi-material interface. J. Appl. Mech. 30, 142 1963

    Article  Google Scholar 

  19. J.W. Hutchinson Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 1992

    Article  Google Scholar 

  20. J. Dundurs: Discussion of edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 36, 650 1969

    Article  Google Scholar 

  21. J.J. Vlassak: Channel cracking in thin films on substrates of finite thickness. Int. J. Fract. 120, 299 2003

    Article  Google Scholar 

  22. T. Suga, G. Elssner S. Schmauder: Composite parameters and mechanical compatibility of material joints. J. Compos. Mater. 22, 917 1988

    Article  Google Scholar 

  23. B.N. Lucas, J.C. Hay W.C. Oliver: Using multidimensional contact experiments to determine Poisson’s ratio. J. Mater. Res. 19, 58 2004

    Article  CAS  Google Scholar 

  24. B.N. Lucas, J.C. Hay W.C. Oliver: Using multi-dimensional contact mechanics experiments to measure Poisson’s ratio of porous low-k films in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics—2003, edited by A.J. McKerrow, J. Leu, O. Kraft, and T. Kikkawa (Mater. Res. Soc. Symp. Proc. 766, Warrendale, PA, 2003), p. 177

  25. K.E. Evans A. Alderson: Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 12, 617 2000

    Article  CAS  Google Scholar 

  26. W. Yang, Z-M. Li, W. Shi, B-H. Xie M-B. Yang: Review on auxetic materials. J. Mater. Sci. 39, 3269 2004

    Article  CAS  Google Scholar 

  27. A. Alderson K.E. Evans: Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89, 2255031 2002

    Article  Google Scholar 

  28. T.C.T. Ting T. Chen: Poisson’s ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math. 58, 73 2005

    Article  Google Scholar 

  29. R.S. Lakes: Negative Poisson’s ratio materials. Science 238, 551 1987

    Article  CAS  Google Scholar 

  30. G. Simmons H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook MIT Press Cambridge, MA 1971

    Google Scholar 

  31. T.Y. Tsui, A.J. McKerrow J.J. Vlassak: Constraint effects on thin film channel cracking behavior. J. Mater. Res. 20, 2266 2005

    Article  CAS  Google Scholar 

  32. T. Nakamura S.M. Kamath: Three-dimensional effects in thin film fracture mechanics. Mech. Mater. 13, 67 1992

    Article  Google Scholar 

  33. J.M. Jacques, T.Y. Tsui, A.J. McKerrow R. Kraft: Environmental effects on crack characteristics for OSG materials in Thin Films—Stresses and Mechanical Properties XI, edited by T.E. Buchheit, A.M. Minor, R. Spolenak, and K. Takashima (Mater. Res. Soc. Symp. Proc. 875, Warrendale, PA, 2005). O10.6

  34. S.M. Wiederhorn: Fracture surface energy of glass. J. Am. Ceram. Soc. 52, 99 1969

    Article  CAS  Google Scholar 

  35. J.J. Petrovic: Review: Mechanical properties of ice and snow. J. Mater. Sci. 38, 1 2003

    Article  CAS  Google Scholar 

  36. G.D. Quinn R.C. Bradt: On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90, 673 2007

    Article  CAS  Google Scholar 

  37. A.A. Volinsky, J.B. Vella W.W. Gerberich: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin Solid Films 429, 201 2003

    Article  CAS  Google Scholar 

  38. J.B. Vella, I.S. Adhihetty, K. Junker A.A. Volinsky: Mechanical properties and fracture toughness of organo-silicate glass (OSG) low-k dielectric thin films for microelectronic applications. Int. J. Fract. 120, 487 2003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan J. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, D.J., Cook, R.F. Indentation fracture of low-dielectric constant films: Part II. Indentation fracture mechanics model. Journal of Materials Research 23, 2443–2457 (2008). https://doi.org/10.1557/jmr.2008.0295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0295

Navigation