1932

Abstract

A characteristic feature of the human airway epithelium is the presence of ciliated cells bearing motile cilia, specialized cell surface projections containing axonemes composed of microtubules and dynein arms, which provide ATP-driven motility. In the airways, cilia function in concert with airway mucus to mediate the critical function of mucociliary clearance, cleansing the airways of inhaled particles and pathogens. The prototypical disorder of respiratory cilia is primary ciliary dyskinesia, an inherited disorder that leads to impaired mucociliary clearance, to repeated chest infections, and to the progressive destruction of lung architecture. Numerous acquired lung diseases are also marked by abnormalities in both cilia structure and function. In this review we summarize current knowledge regarding airway ciliated cells and cilia, how they function to maintain a healthy epithelium, and how disorders of cilia structure and function contribute to inherited and acquired lung disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071931
2015-02-10
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071931.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071931&mimeType=html&fmt=ahah

Literature Cited

  1. Mercer RR, Russell ML, Roggli VL, Crapo JD. 1.  1994. Cell number and distribution in human and rat airways. Am. J. Respir. Cell Mol. Biol. 10:613–24 [Google Scholar]
  2. Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. 2.  2008. Airway epithelial cells: current concepts and challenges. Proc. Am. Thorac. Soc. 5:772–77 [Google Scholar]
  3. Knight DA, Holgate ST. 3.  2003. The airway epithelium: structural and functional properties in health and disease. Respirology 8:432–46 [Google Scholar]
  4. Knowles MR, Boucher RC. 4.  2002. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Investig. 109:571–77 [Google Scholar]
  5. Raman T, O'Connor TP, Hackett NR, Wang W, Harvey BG. 5.  et al. 2009. Quality control in microarray assessment of gene expression in human airway epithelium. BMC Genomics 10:493 [Google Scholar]
  6. Chang MMJ, Shih L, Wu R. 6.  2008. Pulmonary epithelium: cell types and functions. The Pulmonary Epithelium in Health and Disease D Proud 1–16 Chichester, UK: Wiley & Sons [Google Scholar]
  7. Shaykhiev R, Otaki F, Bonsu P, Dang DT, Teater M. 7.  et al. 2011. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell. Mol. Life Sci. 68:877–92 [Google Scholar]
  8. Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG. 8.  2001. Cellular and molecular characteristics of basal cells in airway epithelium. Exp. Lung. Res. 27:401–15 [Google Scholar]
  9. Button B, Cai LH, Ehre C, Kesimer M, Hill DB. 9.  et al. 2012. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–41 [Google Scholar]
  10. Rawlins EL, Ostrowski LE, Randell SH, Hogan BL. 10.  2007. Lung development and repair: contribution of the ciliated lineage. Proc. Natl. Acad. Sci. USA 104:410–17 [Google Scholar]
  11. Breeze RG, Wheeldon EB. 11.  1977. The cells of the pulmonary airways. Am. Rev. Respir. Dis. 116:705–77 [Google Scholar]
  12. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP. 12.  et al. 2009. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. USA 106:12771–75 [Google Scholar]
  13. Heguy A, Harvey BG, Leopold PL, Dolgalev I, Raman T, Crystal RG. 13.  2007. Responses of the human airway epithelium transcriptome to in vivo injury. Physiol. Genomics 29:139–48 [Google Scholar]
  14. Gerovac BJ, Valencia M, Baumlin N, Salathe M, Conner GE, Fregien NL. 14.  2014. Submersion and hypoxia inhibit ciliated cell differentiation in a Notch dependent manner. Am. J. Respir. Cell Mol. Biol. 51516–25
  15. Didon L, Zwick RK, Chao IW, Walters MS, Wang R. 15.  et al. 2013. RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir. Res. 14:70 [Google Scholar]
  16. Gomperts BN, Kim LJ, Flaherty SA, Hackett BP. 16.  2007. IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am. J. Respir. Cell Mol. Biol. 37:339–46 [Google Scholar]
  17. You Y, Huang T, Richer EJ, Schmidt JE, Zabner J. 17.  et al. 2004. Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 286:L650–57 [Google Scholar]
  18. Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BL. 18.  2011. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8:639–48 [Google Scholar]
  19. Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert SE. 19.  et al. 2009. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J. Clin. Investig. 119:2914–24 [Google Scholar]
  20. Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. 20.  2011. Evolution: tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194:165–75 [Google Scholar]
  21. Ishikawa H, Marshall WF. 21.  2011. Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12:222–34 [Google Scholar]
  22. Broekhuis JR, Leong WY, Jansen G. 22.  2013. Regulation of cilium length and intraflagellar transport. Int. Rev. Cell Mol. Biol. 303:101–38 [Google Scholar]
  23. Satir P, Christensen ST. 23.  2008. Structure and function of mammalian cilia. Histochem. Cell Biol. 129:687–93 [Google Scholar]
  24. Choksi SP, Lauter G, Swoboda P, Roy S. 24.  2014. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 141:1427–41 [Google Scholar]
  25. Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. 25.  2013. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 188:913–22 [Google Scholar]
  26. Kobayashi D, Takeda H. 26.  2012. Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. Differentiation 83:S23–29 [Google Scholar]
  27. Singla V, Reiter JF. 27.  2006. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313:629–33 [Google Scholar]
  28. Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM. 28.  et al. 2002. A proteomic analysis of human cilia: identification of novel components. Mol. Cell. Proteomics 1:451–65 [Google Scholar]
  29. Hoh RA, Stowe TR, Turk E, Stearns T. 29.  2012. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLOS ONE 7:e52166 [Google Scholar]
  30. Fahy JV, Dickey BF. 30.  2010. Airway mucus function and dysfunction. N. Engl. J. Med. 363:2233–47 [Google Scholar]
  31. Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT. 31.  et al. 1998. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95:1005–15 [Google Scholar]
  32. Sleigh MA, Blake JR, Liron N. 32.  1988. The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137:726–41 [Google Scholar]
  33. Jain R, Ray JM, Pan JH, Brody SL. 33.  2012. Sex hormone–dependent regulation of cilia beat frequency in airway epithelium. Am. J. Respir. Cell Mol. Biol. 46:446–53 [Google Scholar]
  34. Jiao J, Wang H, Lou W, Jin S, Fan E. 34.  et al. 2011. Regulation of ciliary beat frequency by the nitric oxide signaling pathway in mouse nasal and tracheal epithelial cells. Exp. Cell Res. 317:2548–53 [Google Scholar]
  35. Salathe M. 35.  2007. Regulation of mammalian ciliary beating. Annu. Rev. Physiol. 69:401–22 [Google Scholar]
  36. Schmid A, Salathe M. 36.  2011. Ciliary beat co-ordination by calcium. Biol. Cell 103:159–69 [Google Scholar]
  37. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. 37.  2009. Motile cilia of human airway epithelia are chemosensory. Science 325:1131–34 [Google Scholar]
  38. Enuka Y, Hanukoglu I, Edelheit O, Vaknine H, Hanukoglu A. 38.  2012. Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem. Cell Biol. 137:339–53 [Google Scholar]
  39. Ostrowski LE, Hutchins JR, Zakel K, O'Neal WK. 39.  2003. Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter. Mol. Ther. 8:637–45 [Google Scholar]
  40. Braiman A, Priel Z. 40.  2008. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir. Physiol. Neurobiol. 163:202–7 [Google Scholar]
  41. Button B, Boucher RC. 41.  2008. Role of mechanical stress in regulating airway surface hydration and mucus clearance rates. Respir. Physiol. Neurobiol. 163:189–201 [Google Scholar]
  42. Davis CW, Lazarowski E. 42.  2008. Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir. Physiol. Neurobiol. 163:208–13 [Google Scholar]
  43. Agius AM, Smallman LA, Pahor AL. 43.  1998. Age, smoking and nasal ciliary beat frequency. Clin. Otolaryngol. Allied Sci. 23:227–30 [Google Scholar]
  44. Ho JC, Chan KN, Hu WH, Lam WK, Zheng L. 44.  et al. 2001. The effect of aging on nasal mucociliary clearance, beat frequency, and ultrastructure of respiratory cilia. Am. J. Respir. Crit. Care Med. 163:983–88 [Google Scholar]
  45. Muns G, Singer P, Wolf F, Rubinstein I. 45.  1995. Impaired nasal mucociliary clearance in long-distance runners. Int. J. Sports Med. 16:209–13 [Google Scholar]
  46. Yaghi A, Zaman A, Cox G, Dolovich MB. 46.  2012. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir. Med. 106:1139–47 [Google Scholar]
  47. Svartengren M, Falk R, Philipson K. 47.  2005. Long-term clearance from small airways decreases with age. Eur. Respir. J. 26:609–15 [Google Scholar]
  48. Lee RM, Rossman CM, O'Brodovich H. 48.  1987. Assessment of postmortem respiratory ciliary motility and ultrastructure. Am. Rev. Respir. Dis. 136:445–47 [Google Scholar]
  49. Hessel J, Heldrich J, Fuller J, Staudt MR, Radisch S. 49.  et al. 2014. Intraflagellar transport gene expression associated with short cilia in smoking and COPD. PLOS ONE 9:e85453 [Google Scholar]
  50. Leopold PL, O'Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG. 50.  2009. Smoking is associated with shortened airway cilia. PLOS ONE 4:e8157 [Google Scholar]
  51. Veerman AJ, van Delden L, Feenstra L, Leene W. 51.  1980. The immotile cilia syndrome: phase contrast light microscopy, scanning and transmission electron microscopy. Pediatrics 65:698–702 [Google Scholar]
  52. Shoemark A, Hogg C. 52.  2013. Electron tomography of respiratory cilia. Thorax 68:190–91 [Google Scholar]
  53. Luk CK, Dulfano MJ. 53.  1983. Effect of pH, viscosity and ionic-strength changes on ciliary beating frequency of human bronchial explants. Clin. Sci. 64:449–51 [Google Scholar]
  54. Low PM, Luk CK, Dulfano MJ, Finch PJ. 54.  1984. Ciliary beat frequency of human respiratory tract by different sampling techniques. Am. Rev. Respir. Dis. 130:497–98 [Google Scholar]
  55. Yager JA, Ellman H, Dulfano MJ. 55.  1980. Human ciliary beat frequency at three levels of the tracheobronchial tree. Am. Rev. Respir. Dis. 121:661–65 [Google Scholar]
  56. Cyrus CB, Yang B, McCaffrey TV. 56.  1998. Leukotrienes C4 and D4 increase the ciliary beat frequency in human upper airway mucosa in vitro. Otolaryngol. Head Neck Surg. 118:472–77 [Google Scholar]
  57. Oldenburg AL, Chhetri RK, Hill DB, Button B. 57.  2012. Monitoring airway mucus flow and ciliary activity with optical coherence tomography. Biomed. Opt. Express 3:1978–92 [Google Scholar]
  58. Parrilla E, Armengot M, Mata M, Cortijo J, Riera J. 58.  et al. 2013. Ciliary motility activity measurement using a dense optical flow algorithm. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013:4446–49 [Google Scholar]
  59. Braat JP, Ainge G, Bowles JA, Richards DH, Van RD. 59.  et al. 1995. The lack of effect of benzalkonium chloride on the cilia of the nasal mucosa in patients with perennial allergic rhinitis: a combined functional, light, scanning and transmission electron microscopy study. Clin. Exp. Allergy 25:957–65 [Google Scholar]
  60. Weiss T, Dorow P, Felix R. 60.  1983. Regional mucociliary removal of inhaled particles in smokers with small airways disease. Respiration 44:338–45 [Google Scholar]
  61. Zwas ST, Katz I, Belfer B, Baum GL, Aharonson E. 61.  1987. Scintigraphic monitoring of mucociliary tracheo-bronchial clearance of technetium-99m macroaggregated albumin aerosol. J. Nucl. Med. 28:161–67 [Google Scholar]
  62. Foster WM, Bergofsky EH, Bohning DE, Lippmann M, Albert RE. 62.  1976. Effect of adrenergic agents and their mode of action on mucociliary clearance in man. J. Appl. Physiol. 41:146–52 [Google Scholar]
  63. Mossberg B, Philipson K, Camner P. 63.  1978. Tracheobronchial clearance in patients with emphysema associated with α1-antitrypsin deficiency. Scand. J. Respir. Dis. 59:1–7 [Google Scholar]
  64. Stahlhofen W, Gebhart J, Heyder J, Philipson K, Camner P. 64.  1981. Intercomparison of regional deposition of aerosol particles in the human respiratory tract and their long-term elimination. Exp. Lung. Res. 2:131–39 [Google Scholar]
  65. Wood RE, Wanner A, Hirsch J, Farrell PM. 65.  1975. Tracheal mucociliary transport in patients with cystic fibrosis and its stimulation by terbutaline. Am. Rev. Respir. Dis. 111:733–38 [Google Scholar]
  66. Kartagener M. 66.  1933. Zur Pathogenese der Bronchiektasien: Bronchiektasien bei Situs viscerum inversus. Beitr. Klin. Tuberk. 83:489–501 [Google Scholar]
  67. Cowan MJ, Gladwin MT, Shelhamer JH. 67.  2001. Disorders of ciliary motility. Am. J. Med. Sci. 321:3–10 [Google Scholar]
  68. Afzelius BA. 68.  1976. A human syndrome caused by immotile cilia. Science 193:317–19 [Google Scholar]
  69. Rossman CM, Forrest JB, Lee RM, Newhouse MT. 69.  1980. The dyskinetic cilia syndrome. Ciliary motility in immotile cilia syndrome. Chest 78:580–82 [Google Scholar]
  70. Rossman CM, Lee RM, Forrest JB, Newhouse MT. 70.  1984. Nasal ciliary ultrastructure and function in patients with primary ciliary dyskinesia compared with that in normal subjects and in subjects with various respiratory diseases. Am. Rev. Respir. Dis. 129:161–67 [Google Scholar]
  71. Moller W, Haussinger K, Ziegler-Heitbrock L, Heyder J. 71.  2006. Mucociliary and long-term particle clearance in airways of patients with immotile cilia. Respir. Res. 7:10 [Google Scholar]
  72. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD. 72.  et al. 2009. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet. Med. 11:473–87 [Google Scholar]
  73. Kott E, Legendre M, Copin B, Papon JF, Dastot–Le Moal F. 73.  et al. 2013. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am. J. Hum. Genet. 93:561–70 [Google Scholar]
  74. Wallmeier J, Al-Mutairi DA, Chen C-T, Loges NT, Pennekamp P. 74.  et al. 2014. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 46:646–51 [Google Scholar]
  75. Verra F, Fleury-Feith J, Boucherat M, Pinchon MC, Bignon J, Escudier E. 75.  1993. Do nasal ciliary changes reflect bronchial changes? An ultrastructural study. Am. Rev. Respir. Dis. 147:908–13 [Google Scholar]
  76. Ehre C, Ridley C, Thornton DJ. 76.  2014. Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int. J. Biochem. Cell Biol. 52:136–45 [Google Scholar]
  77. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R. 77.  et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–73 [Google Scholar]
  78. Boucher RC. 78.  2004. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur. Respir. J. 23:146–58 [Google Scholar]
  79. Boucher RC. 79.  2007. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu. Rev. Med. 58:157–70 [Google Scholar]
  80. Rubin BK. 80.  2007. Mucus structure and properties in cystic fibrosis. Paediatr. Respir. Rev. 8:4–7 [Google Scholar]
  81. Zuelzer WW, Newton WA Jr. 81.  1949. The pathogenesis of fibrocystic disease of the pancreas; a study of 36 cases with special reference to the pulmonary lesions. Pediatrics 4:53–69 [Google Scholar]
  82. Derichs N, Jin BJ, Song Y, Finkbeiner WE, Verkman AS. 82.  2011. Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching. FASEB J. 25:2325–32 [Google Scholar]
  83. Katz SM, Holsclaw DS Jr. 83.  1980. Ultrastructural features of respiratory cilia in cystic fibrosis. Am. J. Clin. Pathol. 73:682–85 [Google Scholar]
  84. Piorunek T, Marszalek A, Biczysko W, Gozdzik J, Cofta S, Seget M. 84.  2008. Correlation between the stage of cystic fibrosis and the level of morphological changes in adult patients. J. Physiol. Pharmacol. 59:Suppl. 6565–72 [Google Scholar]
  85. Hubbard RC, McElvaney NG, Birrer P, Shak S, Robinson WW. 85.  et al. 1992. A preliminary study of aerosolized recombinant human deoxyribonuclease I in the treatment of cystic fibrosis. N. Engl. J. Med. 326:812–15 [Google Scholar]
  86. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC. 86.  et al. 2011. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365:1663–72 [Google Scholar]
  87. Camner P, Mossberg B, Philipson K. 87.  1973. Tracheobronchial clearance and chronic obstructive lung disease. Scand. J. Respir. Dis. 54:272–81 [Google Scholar]
  88. Shin MS, Ho KJ. 88.  1993. Bronchiectasis in patients with α1-antitrypsin deficiency. A rare occurrence?. Chest 104:1384–86 [Google Scholar]
  89. Bonneau D, Raymond F, Kremer C, Klossek JM, Kaplan J, Patte F. 89.  1993. Usher syndrome type I associated with bronchiectasis and immotile nasal cilia in two brothers. J. Med. Genet. 30:253–54 [Google Scholar]
  90. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B. 90.  et al. 2007. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet. 39:727–29 [Google Scholar]
  91. Schmidts M, Vodopiutz J, Christou-Savina S, Cortes CR, Inerney-Leo AM. 91.  et al. 2013. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am. J. Hum. Genet. 93:932–44 [Google Scholar]
  92. Gray PE, Sillence D, Kakakios A. 92.  2011. Is Roifman syndrome an X-linked ciliopathy with humoral immunodeficiency? Evidence from 2 new cases. Int. J. Immunogenet. 38:501–5 [Google Scholar]
  93. Albert RE, Lippmann M, Briscoe W. 93.  1969. The characteristics of bronchial clearance in humans and the effects of cigarette smoking. Arch. Environ. Health 18:738–55 [Google Scholar]
  94. Pavia D, Thomson ML, Pocock SJ. 94.  1971. Evidence for temporary slowing of mucociliary clearance in the lung caused by tobacco smoking. Nature 231:325–26 [Google Scholar]
  95. Foster WM, Langenback EG, Bergofsky EH. 95.  1985. Disassociation in the mucociliary function of central and peripheral airways of asymptomatic smokers. Am. Rev. Respir. Dis. 132:633–39 [Google Scholar]
  96. Ramos EM, De Toledo AC, Xavier RF, Fosco LC, Vieira RP. 96.  et al. 2011. Reversibility of impaired nasal mucociliary clearance in smokers following a smoking cessation programme. Respirology 16:849–55 [Google Scholar]
  97. Auerbach O, Stout AP, Hammond EC, Garfinkel L. 97.  1962. Changes in bronchial epithelium in relation to sex, age, residence, smoking and pneumonia. N. Engl. J. Med. 267:111–19 [Google Scholar]
  98. Auerbach O, Hammond EC, Garfinkel L. 98.  1979. Changes in bronchial epithelium in relation to cigarette smoking, 1955–1960 versus 1970–1977. N. Engl. J. Med. 300:381–85 [Google Scholar]
  99. Shaykhiev R, Zuo WL, Chao I, Fukui T, Witover B. 99.  et al. 2013. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc. Natl. Acad. Sci. USA 110:12102–7 [Google Scholar]
  100. Fox B, Bull TB, Oliver TN. 100.  1983. The distribution and assessment of electron-microscopic abnormalities of human cilia. Eur. J. Respir. Dis. Suppl. 127:11–18 [Google Scholar]
  101. Lungarella G, Fonzi L, Ermini G. 101.  1983. Abnormalities of bronchial cilia in patients with chronic bronchitis. An ultrastructural and quantitative analysis. Lung 161:147–56 [Google Scholar]
  102. McDowell EM, Barrett LA, Harris CC, Trump BF. 102.  1976. Abnormal cilia in human bronchial epithelium. Arch. Pathol. Lab. Med. 100:429–36 [Google Scholar]
  103. Verra F, Escudier E, Lebargy F, Bernaudin JF, de Crémoux H, Bignon J. 103.  1995. Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am. J. Respir. Crit. Care Med. 151:630–34 [Google Scholar]
  104. Ballenger JJ. 104.  1960. Experimental effect of cigarette smoke on human respiratory cilia. N. Engl. J. Med. 263:832–35 [Google Scholar]
  105. Dalhamn T. 105.  1959. The effect of cigarette smoke on ciliary activity in the upper respiratory tract. AMA Arch. Otolaryngol. 70:166–68 [Google Scholar]
  106. Carson JL, Lu TS, Brighton L, Hazucha M, Jaspers I, Zhou H. 106.  2010. Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke. In Vitro Cell Dev. Biol. Anim. 46:606–12 [Google Scholar]
  107. Stanley PJ, Wilson R, Greenstone MA, MacWilliam L, Cole PJ. 107.  1986. Effect of cigarette smoking on nasal mucociliary clearance and ciliary beat frequency. Thorax 41:519–23 [Google Scholar]
  108. Clary-Meinesz C, Mouroux J, Huitorel P, Cosson J, Schoevaert D, Blaive B. 108.  1997. Ciliary beat frequency in human bronchi and bronchioles. Chest 111:692–97 [Google Scholar]
  109. Dulfano MJ, Luk CK, Beckage M, Wooten O. 109.  1981. Ciliary beat frequency in human respiratory explants. Am. Rev. Respir. Dis. 123:139–40 [Google Scholar]
  110. Zhou H, Wang X, Brighton L, Hazucha M, Jaspers I, Carson JL. 110.  2009. Increased nasal epithelial ciliary beat frequency associated with lifestyle tobacco smoke exposure. Inhal. Toxicol. 21:875–81 [Google Scholar]
  111. Kharitonov SA, Robbins RA, Yates D, Keatings V, Barnes PJ. 111.  1995. Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am. J. Respir. Crit. Care Med. 152:609–12 [Google Scholar]
  112. Allen-Gipson DS, Romberger DJ, Forget MA, May KL, Sisson JH, Wyatt TA. 112.  2004. IL-8 inhibits isoproterenol-stimulated ciliary beat frequency in bovine bronchial epithelial cells. J. Aerosol Med. 17:107–15 [Google Scholar]
  113. Atef A, Zeid IA, Qotb M, El Rab EG. 113.  2009. Effect of passive smoking on ciliary regeneration of nasal mucosa after functional endoscopic sinus surgery in children. J. Laryngol. Otol. 123:75–79 [Google Scholar]
  114. Elwany S, Ibrahim AA, Mandour Z, Talaat I. 114.  2012. Effect of passive smoking on the ultrastructure of the nasal mucosa in children. Laryngoscope 122:965–69 [Google Scholar]
  115. Wang LF, White DR, Andreoli SM, Mulligan RM, Discolo CM, Schlosser RJ. 115.  2012. Cigarette smoke inhibits dynamic ciliary beat frequency in pediatric adenoid explants. Otolaryngol. Head Neck Surg. 146:659–63 [Google Scholar]
  116. Habesoglu M, Demir K, Yumusakhuylu AC, Yilmaz AS, Oysu C. 116.  2012. Does passive smoking have an effect on nasal mucociliary clearance?. Otolaryngol. Head Neck Surg. 147:152–56 [Google Scholar]
  117. Fligiel SE, Roth MD, Kleerup EC, Barsky SH, Simmons MS, Tashkin DP. 117.  1997. Tracheobronchial histopathology in habitual smokers of cocaine, marijuana, and/or tobacco. Chest 112:319–26 [Google Scholar]
  118. Roth MD, Arora A, Barsky SH, Kleerup EC, Simmons M, Tashkin DP. 118.  1998. Airway inflammation in young marijuana and tobacco smokers. Am. J. Respir. Crit. Care Med. 157:928–37 [Google Scholar]
  119. Calderon-Garciduenas L, Rodriguez-Alcaraz A, Villarreal-Calderon A, Lyght O, Janszen D, Morgan KT. 119.  1998. Nasal epithelium as a sentinel for airborne environmental pollution. Toxicol. Sci. 46:352–64 [Google Scholar]
  120. Carson JL, Collier AM, Fernald GW, Hu SC. 120.  1994. Microtubular discontinuities as acquired ciliary defects in airway epithelium of patients with chronic respiratory diseases. Ultrastruct. Pathol. 18:327–32 [Google Scholar]
  121. Riechelmann H, Kienast K, Schellenberg J, Mann WJ. 121.  1994. An in vitro model to study effects of airborne pollutants on human ciliary activity. Rhinology 32:105–8 [Google Scholar]
  122. Pedersen M. 122.  1990. Ciliary activity and pollution. Lung 168:Suppl.368–76 [Google Scholar]
  123. Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A. 123.  et al. 2013. Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction. J. Clin. Investig. 123:5212–30 [Google Scholar]
  124. Koblizek V, Tomsova M, Cermakova E, Papousek P, Pracharova S. 124.  et al. 2011. Impairment of nasal mucociliary clearance in former smokers with stable chronic obstructive pulmonary disease relates to the presence of a chronic bronchitis phenotype. Rhinology 49:397–406 [Google Scholar]
  125. Cloonan SM, Lam HC, Ryter SW, Choi AM. 125.  2014. “Ciliophagy”: the consumption of cilia components by autophagy. Autophagy 10:532–34 [Google Scholar]
  126. Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A. 126.  et al. 2013. Functional interaction between autophagy and ciliogenesis. Nature 502:194–200 [Google Scholar]
  127. Tang Z, Lin MG, Stowe TR, Chen S, Zhu M. 127.  et al. 2013. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502:254–57 [Google Scholar]
  128. McShane PJ, Naureckas ET, Tino G, Strek ME. 128.  2013. Non–cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 188:647–56 [Google Scholar]
  129. de Iongh RU, Rutland J. 129.  1995. Ciliary defects in healthy subjects, bronchiectasis, and primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 151:1559–67 [Google Scholar]
  130. Tsang KW, Tipoe G, Sun J, Tan KC, Leung R. 130.  et al. 2005. Clinical value of ciliary assessment in bronchiectasis. Lung 183:73–86 [Google Scholar]
  131. Rutland J, Cole PJ. 131.  1981. Nasal mucociliary clearance and ciliary beat frequency in cystic fibrosis compared with sinusitis and bronchiectasis. Thorax 36:654–58 [Google Scholar]
  132. Smallman LA, Hill SL, Stockley RA. 132.  1984. Reduction of ciliary beat frequency in vitro by sputum from patients with bronchiectasis: a serine proteinase effect. Thorax 39:663–67 [Google Scholar]
  133. Jain R, Javidan-Nejad C, Alexander-Brett J, Horani A, Cabellon MC. 133.  et al. 2012. Sensory functions of motile cilia and implication for bronchiectasis. Front. Biosci. 4:1088–98 [Google Scholar]
  134. Hilding AC. 134.  1943. The relation of ciliary insufficiency to death from asthma and other respiratory diseases. Ann. Otol. Rhinol. Laryngol. 52:5–19 [Google Scholar]
  135. Dunnill MS. 135.  1960. The pathology of asthma, with special reference to changes in the bronchial mucosa. J. Clin. Pathol. 13:27–33 [Google Scholar]
  136. Mezey RJ, Cohn MA, Fernandez RJ, Januszkiewicz AJ, Wanner A. 136.  1978. Mucociliary transport in allergic patients with antigen-induced bronchospasm. Am. Rev. Respir. Dis. 118:677–84 [Google Scholar]
  137. Mossberg B, Strandberg K, Philipson K, Camner P. 137.  1976. Tracheobronchial clearance in bronchial asthma: response to β-adrenoceptor stimulation. Scand. J. Respir. Dis. 57:119–28 [Google Scholar]
  138. Bateman JR, Pavia D, Sheahan NF, Agnew JE, Clarke SW. 138.  1983. Impaired tracheobronchial clearance in patients with mild stable asthma. Thorax 38:463–67 [Google Scholar]
  139. Ahmed T, Greenblatt DW, Birch S, Marchette B, Wanner A. 139.  1981. Abnormal mucociliary transport in allergic patients with antigen-induced bronchospasm: role of slow reacting substance of anaphylaxis. Am. Rev. Respir. Dis. 124:110–14 [Google Scholar]
  140. Beasley R, Roche WR, Roberts JA, Holgate ST. 140.  1989. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am. Rev. Respir. Dis. 139:806–17 [Google Scholar]
  141. Cokugras H, Akcakaya N, Seckin I, Camcioglu Y, Sarimurat N, Aksoy F. 141.  2001. Ultrastructural examination of bronchial biopsy specimens from children with moderate asthma. Thorax 56:25–29 [Google Scholar]
  142. Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T. 142.  1985. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am. Rev. Respir. Dis. 131:599–606 [Google Scholar]
  143. Lewis FH, Beals TF, Carey TE, Baker SR, Mathews KP. 143.  1983. Ultrastructural and functional studies of cilia from patients with asthma, aspirin intolerance, and nasal polyps. Chest 83:487–90 [Google Scholar]
  144. Thomas B, Rutman A, Hirst RA, Haldar P, Wardlaw AJ. 144.  et al. 2010. Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. J. Allergy Clin. Immunol. 126:722–29 [Google Scholar]
  145. Dulfano MJ, Luk CK, Beckage M, Wooten O. 145.  1982. Ciliary inhibitory effects of asthma patients' sputum. Clin. Sci. 63:393–96 [Google Scholar]
  146. Joki S, Saano V, Koskela T, Toskala E, Bray MA, Nuutinen J. 146.  1996. Effect of leukotriene D4 on ciliary activity in human, guinea-pig and rat respiratory mucosa. Pulm. Pharmacol. 9:231–38 [Google Scholar]
  147. Schuil PJ, van Gelder JM, ten Berge M, Graamans K, Huizing EH. 147.  1994. Histamine and leukotriene C4 effects on in vitro ciliary beat frequency of human upper respiratory cilia. Eur. Arch. Otorhinolaryngol. 251:325–28 [Google Scholar]
  148. Ingram JL, Kraft M. 148.  2012. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J. Allergy Clin. Immunol. 130:829–42 [Google Scholar]
  149. Laoukili J, Perret E, Willems T, Minty A, Parthoens E. 149.  et al. 2001. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J. Clin. Investig. 108:1817–24 [Google Scholar]
  150. Thavagnanam S, Parker JC, McBrien ME, Skibinski G, Heaney LG, Shields MD. 150.  2011. Effects of IL-13 on mucociliary differentiation of pediatric asthmatic bronchial epithelial cells. Pediatr. Res. 69:95–100 [Google Scholar]
  151. Kovacic MB, Myers JM, Wang N, Martin LJ, Lindsey M. 151.  et al. 2011. Identification of KIF3A as a novel candidate gene for childhood asthma using RNA expression and population allelic frequencies differences. PLOS ONE 6:e23714 [Google Scholar]
  152. Kim JH, Cha JY, Cheong HS, Park JS, Jang AS. 152.  et al. 2011. KIF3A, a cilia structural gene on chromosome 5q31, and its polymorphisms show an association with aspirin hypersensitivity in asthma. J. Clin. Immunol. 31:112–21 [Google Scholar]
  153. Amitani R, Wilson R, Rutman A, Read R, Ward C. 153.  et al. 1991. Effects of human neutrophil elastase and Pseudomonas aeruginosa proteinases on human respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 4:26–32 [Google Scholar]
  154. Gaillard D, Jouet JB, Egreteau L, Plotkowski L, Zahm JM. 154.  et al. 1994. Airway epithelial damage and inflammation in children with recurrent bronchitis. Am. J. Respir. Crit. Care Med. 150:810–17 [Google Scholar]
  155. Balder R, Krunkosky TM, Nguyen CQ, Feezel L, Lafontaine ER. 155.  2009. Hag mediates adherence of Moraxella catarrhalis to ciliated human airway cells. Infect. Immun. 77:4597–608 [Google Scholar]
  156. Look DC, Walter MJ, Williamson MR, Pang L, You Y. 156.  et al. 2001. Effects of paramyxoviral infection on airway epithelial cell Foxj1 expression, ciliogenesis, and mucociliary function. Am. J. Pathol. 159:2055–69 [Google Scholar]
  157. Rayner CFJ, Rutman A, Dewar A, Cole PJ, Wilson R. 157.  1995. Ciliary disorientation in patients with chronic upper respiratory tract inflammation. Am. J. Respir. Crit. Care Med. 151:800–4 [Google Scholar]
  158. Kantar A, Oggiano N, Giorgi PL, Braga PC, Fiorini R. 158.  1994. Polymorphonuclear leukocyte–generated oxygen metabolites decrease beat frequency of human respiratory cilia. Lung 172:215–22 [Google Scholar]
  159. Isawa T, Teshima T, Hirano T, Ebina A, Konno K. 159.  1986. Mucociliary clearance mechanism in interstitial lung disease. Tohoku J. Exp. Med. 148:169–78 [Google Scholar]
  160. Thomson ML, Short MD. 160.  1969. Mucociliary function in health, chronic obstructive airway disease, and asbestosis. J. Appl. Physiol. 26:535–39 [Google Scholar]
  161. Yang IV, Coldren CD, Leach SM, Seibold MA, Murphy E. 161.  et al. 2013. Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax 68:1114–21 [Google Scholar]
  162. Knoop C, Estenne M. 162.  2011. Chronic allograft dysfunction. Clin. Chest Med. 32:311–26 [Google Scholar]
  163. Dolovich M, Rossman C, Chambers C, Grossman RF, Newhouse M, Maurer J. 163.  1987. Mucociliary function in patients following single lung or lung/heart transplantation. Am. Rev. Respir. Dis. 135:7 [Google Scholar]
  164. Shankar S, Fulsham L, Read RC, Theodoropoulos S, Cole PJ. 164.  et al. 1991. Mucociliary function after lung transplantation. Transplant. Proc. 23:1222–23 [Google Scholar]
  165. Veale D, Glasper PN, Gascoigne A, Dark JH, Gibson GJ, Corris PA. 165.  1993. Ciliary beat frequency in transplanted lungs. Thorax 48:629–31 [Google Scholar]
  166. Norgaard MA, Andersen CB, Pettersson G. 166.  1999. Airway epithelium of transplanted lungs with and without direct bronchial artery revascularization. Eur. J. Cardiothorac. Surg. 15:37–44 [Google Scholar]
  167. Read RC, Shankar S, Rutman A, Feldman C, Yacoub M. 167.  et al. 1991. Ciliary beat frequency and structure of recipient and donor epithelia following lung transplantation. Eur. Respir. J. 4:796–801 [Google Scholar]
  168. Thomas B, Aurora P, Spencer H, Elliott M, Rutman A. 168.  et al. 2012. Persistent disruption of ciliated epithelium following paediatric lung transplantation. Eur. Respir. J. 40:1245–52 [Google Scholar]
  169. Uhlving HH, Buchvald F, Heilmann CJ, Nielsen KG, Gormsen M, Muller KG. 169.  2012. Bronchiolitis obliterans after allo-SCT: clinical criteria and treatment options. Bone Marrow Transplant. 47:1020–29 [Google Scholar]
  170. Au WY, Ho JC, Lie AK, Sun J, Zheng L. 170.  et al. 2001. Respiratory ciliary function in bone marrow recipients. Bone Marrow Transplant. 27:1147–51 [Google Scholar]
  171. Au WY, Ho JC, Lie AK, Sun J, Zheng L. 171.  et al. 2006. A prospective study of respiratory ciliary structure and function after stem cell transplantation. Bone Marrow Transplant. 38:243–48 [Google Scholar]
  172. Konrad F, Schiener R, Marx T, Georgieff M. 172.  1995. Ultrastructure and mucociliary transport of bronchial respiratory epithelium in intubated patients. Intensive Care Med. 21:482–89 [Google Scholar]
  173. Mammel MC, Ophoven JP, Lewallen PK, Gordon MJ, Sutton MC, Boros SJ. 173.  1986. High-frequency ventilation and tracheal injuries. Pediatrics 77:608–13 [Google Scholar]
  174. Ophoven JP, Mammel MC, Boros SJ. 174.  1988. Tracheobronchial injury with high-frequency oscillatory ventilation. J. Pediatr. 112:845–46 [Google Scholar]
  175. Bossi R, Piatti G, Roma E, Ambrosetti U. 175.  2004. Effects of long-term nasal continuous positive airway pressure therapy on morphology, function, and mucociliary clearance of nasal epithelium in patients with obstructive sleep apnea syndrome. Laryngoscope 114:1431–34 [Google Scholar]
  176. Romanelli MC, Gelardi M, Fiorella ML, Tattoli L, Di VG, Solarino B. 176.  2012. Nasal ciliary motility: a new tool in estimating the time of death. Int. J. Legal Med. 126:427–33 [Google Scholar]
  177. Devalia JL, Sapsford RJ, Rusznak C, Toumbis MJ, Davies RJ. 177.  1992. The effects of salmeterol and salbutamol on ciliary beat frequency of cultured human bronchial epithelial cells, in vitro. Pulm. Pharmacol. 5:257–63 [Google Scholar]
  178. Lafortuna CL, Fazio F. 178.  1984. Acute effect of inhaled salbutamol on mucociliary clearance in health and chronic bronchitis. Respiration 45:111–23 [Google Scholar]
  179. Wanner A. 179.  1985. Effects of methylxanthines on airway mucociliary function. Am. J. Med. 79:16–21 [Google Scholar]
  180. Milara J, Armengot M, Banuls P, Tenor H, Beume R. 180.  et al. 2012. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br. J. Pharmacol. 166:2243–62 [Google Scholar]
  181. Iravani J, Melville GN. 181.  1975. [Effects of drugs and environmental factors on ciliary movement (author's transl. )] Respiration 32:157–64 (In German) [Google Scholar]
  182. Corssen G, Allen CR. 182.  1959. Acetylcholine: its significance in controlling ciliary activity of human respiratory epithelium in vitro. J. Appl. Physiol. 14:901–4 [Google Scholar]
  183. Lundgren R, Soderberg M, Horstedt P, Stenling R. 183.  1988. Morphological studies of bronchial mucosal biopsies from asthmatics before and after ten years of treatment with inhaled steroids. Eur. Respir. J. 1:883–89 [Google Scholar]
  184. Fazio F, Lafortuna CL. 184.  1986. Beclomethasone dipropionate does not affect mucociliary clearance in patients with chronic obstructive lung disease. Respiration 50:62–65 [Google Scholar]
  185. Sisson JH, Pavlik JA, Wyatt TA. 185.  2009. Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide–dependent kinase mechanism. Alcohol. Clin. Exp. Res. 33:610–16 [Google Scholar]
  186. Gerrity TR, Cotromanes E, Garrard CS, Yeates DB, Lourenco RV. 186.  1983. The effect of aspirin on lung mucociliary clearance. N. Engl. J. Med. 308:139–41 [Google Scholar]
  187. Matsuura S, Shirakami G, Iida H, Tanimoto K, Fukuda K. 187.  2006. The effect of sevoflurane on ciliary motility in rat cultured tracheal epithelial cells: a comparison with isoflurane and halothane. Anesth. Analg. 102:1703–8 [Google Scholar]
  188. Stafanger G, Koch C. 188.  1989. N-Acetylcysteine in cystic fibrosis and Pseudomonas aeruginosa infection: clinical score, spirometry and ciliary motility. Eur. Respir. J. 2:234–37 [Google Scholar]
  189. Shpak M, Goldberg MM, Cowperthwaite MC. 189.  2014. Cilia gene expression patterns in cancer. Cancer Genomics Proteomics 11:13–24 [Google Scholar]
  190. Auerbach O, Stout AP. 190.  1964. Histopathological aspects of occult cancer of the lung. Ann. N. Y. Acad. Sci. 114:803–10 [Google Scholar]
  191. Imai T, Suga M, Kaimori M, Hiyama M, Yokoyama K, Kurotaki H. 191.  2010. Peripheral pulmonary papillary adenocarcinoma with prominent cilia: report of a rare case that was difficult to diagnose preoperatively. Acta Cytol. 54:949–57 [Google Scholar]
  192. Nakamura S, Koshikawa T, Sato T, Hayashi K, Suchi T. 192.  1992. Extremely well differentiated papillary adenocarcinoma of the lung with prominent cilia formation. Acta Pathol. Jpn. 42:745–50 [Google Scholar]
  193. Park WY, Kim MH, Shin DH, Lee JH, Choi KU. 193.  et al. 2012. Ciliated adenocarcinomas of the lung: a tumor of non-terminal respiratory unit origin. Mod. Pathol. 25:1265–74 [Google Scholar]
  194. Sato S, Koike T, Homma K, Yokoyama A. 194.  2010. Ciliated muconodular papillary tumour of the lung: a newly defined low-grade malignant tumour. Interact. Cardiovasc. Thorac. Surg. 11:685–87 [Google Scholar]
  195. Inoue Y, Suga A, Sekido Y, Yamada S, Iwazaki M. 195.  2011. A case of surgically resected lung cancer in a patient with Kartagener's syndrome. Tokai J. Exp. Clin. Med. 36:21–24 [Google Scholar]
  196. Matthys H, Vastag E, Kohler D, Daikeler G, Fischer J. 196.  1983. Mucociliary clearance in patients with chronic bronchitis and bronchial carcinoma. Respiration 44:329–37 [Google Scholar]
  197. Fukui T, Shaykhiev R, Agosto-Perez F, Mezey JG, Downey RJ. 197.  et al. 2013. Lung adenocarcinoma subtypes based on expression of human airway basal cell genes. Eur. Respir. J. 42:1332–44 [Google Scholar]
  198. Milgrim LM, Rubin JS, Small CB. 198.  1995. Mucociliary clearance abnormalities in the HIV-infected patient: a precursor to acute sinusitis. Laryngoscope 105:1202–8 [Google Scholar]
  199. Armengot M, Climent B, Carda C, Ortega E, Basterra J. 199.  1997. [Clinical and ultrastructural evaluation of nasal mucociliary function in HIV-positive patients. Preliminary investigation]. Acta Otorrinolaringol. Esp. 48:27–30 [Google Scholar]
  200. Palm J, Lidman C, Graf P, Alving K, Lundberg J. 200.  2000. Nasal nitric oxide is reduced in patients with HIV. Acta Otolaryngol. 120:420–23 [Google Scholar]
  201. Rosen EJ, Calhoun KH. 201.  2005. Alterations of nasal mucociliary clearance in association with HIV infection and the effect of guaifenesin therapy. Laryngoscope 115:27–30 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071931
Loading
/content/journals/10.1146/annurev-physiol-021014-071931
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error