Skip to main content
Log in

Supernovae: An example of complexity in the physics of compressible fluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Because the collapse of massive stars occurs in a few seconds, while the stars evolve on billions of years, the supernovae are typical complex phenomena in fluid mechanics with multiple time scales. We describe them in the light of catastrophe theory, assuming that successive equilibria between pressure and gravity present a saddle-center bifurcation. In the early stage we show that the loss of equilibrium may be described by a generic equation of the Painlevé I form. This is confirmed by two approaches, first by the full numerical solutions of the Euler-Poisson equations for a particular pressure-density relation, secondly by a derivation of the normal form of the solutions close to the saddle-center. In the final stage of the collapse, just before the divergence of the central density, we show that the existence of a self-similar collapsing solution compatible with the numerical observations imposes that the gravity forces are stronger than the pressure ones. This situation differs drastically in its principle from the one generally admitted where pressure and gravity forces are assumed to be of the same order. Moreover it leads to different scaling laws for the density and the velocity of the collapsing material. The new self-similar solution (based on the hypothesis of dominant gravity forces) which matches the smooth solution of the outer core solution, agrees globally well with our numerical results, except a delay in the very central part of the star, as discussed. Whereas some differences with the earlier self-similar solutions are minor, others are very important. For example, we find that the velocity field becomes singular at the collapse time, diverging at the center, and decreasing slowly outside the core, whereas previous works described a finite velocity field in the core which tends to a supersonic constant value at large distances. This discrepancy should be important for explaining the emission of remnants in the post-collapse regime. Finally we describe the post-collapse dynamics, when mass begins to accumulate in the center, also within the hypothesis that gravity forces are dominant.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Burrows, Rev. Mod. Phys. 85, 245 (2013).

    Article  ADS  Google Scholar 

  2. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

    Article  ADS  Google Scholar 

  3. R. Thom, Stabilité Structurelle et Morphogénese (Benjamin, New York, 1972).

  4. M.V. Penston, Mon. Not. R. Astron. Soc. 144, 425 (1969).

    Article  ADS  Google Scholar 

  5. R.B. Larson, Mon. Not. R. Astron. Soc. 145, 271 (1969).

    Article  ADS  Google Scholar 

  6. M.P. Brenner, T.P. Witelski, J. Stat. Phys. 93, 863 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. C. Josserand, Y. Pomeau, S. Rica, J. Low Temp. Phys. 145, 231 (2006).

    Article  ADS  Google Scholar 

  8. J. Sopik, C. Sire, P.H. Chavanis, Phys. Rev. E 74, 011112 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  9. R.D. Peters, M. Le Berre, Y. Pomeau, Phys. Rev. E 86, 026207 (2012).

    Article  ADS  Google Scholar 

  10. A.A. Dorodnicyn, Am. Math. Soc. Transl. Series One 4, 1 (1953) (translated from Priklad Mat. i Mek. 11.

    Google Scholar 

  11. P. Coullet, C.R. Mécanique 340, 777 (2012).

    Article  ADS  Google Scholar 

  12. L.D. Landau, E.M. Lifshitz, Statistical Physics, second edition (Pergamon, Oxford, 1987) chapt. IX, p. 317.

  13. R. Emden, Gaskugeln Anwendungen der Mechanischen Wärmetheorie auf Kosmologische und Meteorologie Probleme (Teubner, Leipzig, 1907).

  14. R. Ebert, Z. Astrophys. 37, 217 (1955).

    ADS  MATH  Google Scholar 

  15. W.B. Bonnor, Mon. Not. R. Astron. Soc. 116, 351 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  16. W.H. McCrea, Mon. Not. R. Astron. Soc. 117, 562 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. V.A. Antonov, Vest. Leningr. Gos. Univ. 7, 135 (1962).

    Google Scholar 

  18. D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968).

    Article  ADS  Google Scholar 

  19. P.H. Chavanis, Astron. Astrophys. 381, 340 (2002).

    Article  ADS  MATH  Google Scholar 

  20. P.H. Chavanis, Astron. Astrophys. 401, 15 (2003).

    Article  ADS  MATH  Google Scholar 

  21. P.H. Chavanis, Phys. Rev. E 65, 056123 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. P.H. Chavanis, Astron. Astrophys. 432, 117 (2005).

    Article  ADS  MATH  Google Scholar 

  23. P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006).

    Article  ADS  MATH  Google Scholar 

  24. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  MATH  Google Scholar 

  25. M. Colpi, S.L. Shapiro, I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  26. P.H. Chavanis, Phys. Rev. D 84, 043531 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  27. P.H. Chavanis, T. Harko, Phys. Rev. D 86, 064011 (2012).

    Article  ADS  Google Scholar 

  28. P. Painlevé, Bull. Soc. Math. Phys. France 28, 201 (1900) E.L. Ince, Ordinary Differential Equations.

    MATH  Google Scholar 

  29. P. Hoflich, P. Kumar, J.C. Wheeler, Cosmic Explosions in Three Dimensions: Asymmetries in Supernovae and Gamma Ray Bursts (Cambridge University Press, Cambridge, 2004) p. 276.

  30. P.H. Chavanis, Astron. Astrophys. 451, 109 (2006).

    Article  ADS  MATH  Google Scholar 

  31. H. Nessyahu, E. Tadmor, J. Comput. Phys. 87, 408 (1990) J. Balbas, E. Tadmor, CentPack, http://www.cscamm.umd.edu/centpack.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. P.H. Chavanis, C. Sire, Phys. Rev. E 70, 026115 (2004).

    Article  ADS  Google Scholar 

  33. A. Yahil, Astrophys. J. 265, 1047 (1983).

    Article  ADS  Google Scholar 

  34. G.I. Barenblatt, Y.B. Zel’dovich, Annu. Rev. Fluid Mech. 4, 285 (1972).

    Article  ADS  Google Scholar 

  35. L. Mestel, Q. J. R. Astron. Soc. 6, 161 (1965).

    ADS  Google Scholar 

  36. F.H. Shu, Astrophys. J. 214, 488497 (1977).

    Google Scholar 

  37. P. Goldreich, S.V. Weber, Astrophys. J. 238, 991 (1980).

    Article  ADS  Google Scholar 

  38. J. Bricmont, A. Kupiainen, G. Lin, Comm. Pure Appl. Math. 47, 285 (1994).

    Article  MathSciNet  Google Scholar 

  39. G.L. Eyink, J. Xin, J. Stat. Phys. 100, 679 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  40. C. Sire, P.H. Chavanis, Phys. Rev. E 69, 066109 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Le Berre.

Additional information

Contribution to the Topical Issue “Irreversible Dynamics: A topical issue dedicated to Paul Manneville” edited by Patrice Le Gal and Laurette S. Tuckerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomeau, Y., Le Berre, M., Chavanis, PH. et al. Supernovae: An example of complexity in the physics of compressible fluids. Eur. Phys. J. E 37, 26 (2014). https://doi.org/10.1140/epje/i2014-14026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14026-1

Keywords

Navigation