Skip to main content

Advertisement

Log in

Two-dimensional Janus AsXY (X = Se, Te; Y = Br, I) monolayers for photocatalytic water splitting

  • Regular Article - Solid State and Materials; Semiconductors
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) Janus materials exhibit great potential in photocatalytic applications for providing clean and renewable energy. Here, using the first principles calculations, we explore Janus AsXY (X = Se, Te; Y = Br, I) monolayers that have excellent stability and can be applied in photocatalytic water splitting. It is shown that all four Janus monolayers are indirect band-gap semiconductors with the bandgaps greater than 1.23 eV and their band edge positions straddle both sides of the water redox potential, which facilitates the prevention of carrier recombination. Meanwhile, AsXY monolayers exhibit excellent optical absorption both in the visible and the near-ultraviolet regions. Interestingly, the external potential applied to the AsXY monolayers can provide sufficient photoexcited carrier driving force for the oxygen evolution reaction and the hydrogen evolution reaction in an acidic environment. Therefore, our results reveal that Janus AsXY monolayers are promising candidates for optoelectronics and photocatalytic water splitting applications.

Graphical Abstract

The diagram of photocatalytic water splitting

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article and its supplementary information files. This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. K.C. Christoforidis, P. Fornasiero, Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem 9(9), 1523–1544 (2017). https://doi.org/10.1002/cctc.201601659

    Article  Google Scholar 

  2. K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). https://doi.org/10.1021/jz1007966

    Article  Google Scholar 

  3. H.J. Wang, X. Li, X.X. Zhao, C.Y. Li, X.H. Song, P. Zhang, P.W. Huo, X. Li, A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese J. Catal. 43(2), 178–214 (2022). https://doi.org/10.1016/S1872-2067(21)63910-4

    Article  Google Scholar 

  4. K. Reilly, D.P. Wilkinson, F. Taghipour, Photocatalytic water splitting in a fluidized bed system: computational modeling and experimental studies. Appl. Energy 222(15), 423–436 (2018). https://doi.org/10.1016/j.apenergy.2018.03.020

    Article  Google Scholar 

  5. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326

    Article  Google Scholar 

  6. F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin, J.M. Bao, W.A. Goddardiii, S. Chen, Z.F. Ren, High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z

    Article  ADS  Google Scholar 

  7. C.X. Zhao, C.H. Han, X.F. Yang, J.S. Xu, Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chem. 24(12), 4728–4741 (2022). https://doi.org/10.1039/d2gc00608a

    Article  Google Scholar 

  8. G.Q. Zhao, J. Hu, J. Zou, X. Long, F.P. Jiao, Modulation of BiOBr-based photocatalysts for energy and environmental application: a critical review. J. Environ. Chem. Eng. 10(2), 107226 (2022). https://doi.org/10.1016/j.jece.2022.107226

    Article  Google Scholar 

  9. F.L. Liu, C. Huang, C.X. Liu, R. Shi, Y. Chen, Black phosphorus-based semiconductor heterojunctions for photocatalytic water splitting. Chem. Eur. J. 26(20), 4449–4460 (2020). https://doi.org/10.1002/chem.201904594

    Article  Google Scholar 

  10. P. Wang, Y.X. Zong, H. Liu, H.Y. Wen, H.B. Wu, J.B. Xia, Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J. Mater. Chem. C 9(14), 4989–4999 (2021). https://doi.org/10.1039/d1tc00318f

    Article  Google Scholar 

  11. Z.F. Zhang, Q.K. Qian, B.K. Li, K.J. Chen, Interface Engineering of monolayer MoS2/GaN hybrid heterostructure: modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Inter. 10(20), 17419–17426 (2018). https://doi.org/10.1021/acsami.8b01286

    Article  Google Scholar 

  12. M. Qiao, C. Wang, Y. Jing, X.C. Zhou, Y.F. Li, NbS2Cl2 monolayer: a promising 2D semiconductor for photocatalytic water splitting. Flatchem. 27, 100237 (2021). https://doi.org/10.1016/j.flatc.2021.100237

    Article  Google Scholar 

  13. R.J. Sun, R. Liu, J.J. Lu, X.W. Zhao, G.C. Hu, X.B. Yuan, J.F. Ren, Reversible switching of anomalous valley Hall effect in ferrovalley Janus 1T-CrOX (X = F, Cl, Br, I) and the multiferroic heterostructure CrOX/In2Se3. Phys. Rev. B 105(23), 235416 (2022). https://doi.org/10.1103/PhysRevB.105.235416

    Article  ADS  Google Scholar 

  14. J.T. Guan, X.R. Zhang, Q.Y. Li, K.M. Deng, P. Jena, E.J. Kan, Two-dimensional metal-free boron chalcogenides B2X3 (X = Se and Te) as photocatalysts for water splitting under visible light. Nanoscale 13(6), 3627–3632 (2021). https://doi.org/10.1039/d0nr08203a

    Article  Google Scholar 

  15. J.J. Lu, F.Y. Qu, H. Zeng, A.C. Dias, D.S. Bradao, J.F. Ren, Intrinsic valley splitting and direct-to-indirect band gap transition in monolayer HfZrSiCO2. J. Phys. Chem. Lett. 13(23), 5204–5212 (2022). https://doi.org/10.1021/acs.jpclett.2c01090

    Article  Google Scholar 

  16. Y.G. Li, Y.L. Li, B.S. Sa, R. Ahuja, Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 7(3), 545–559 (2017). https://doi.org/10.1039/c6cy02178f

    Article  Google Scholar 

  17. R.J. Sun, J.J. Lu, X.W. Zhao, G.C. Hu, X.B. Yuan, J.F. Ren, Robust valley polarization induced by super-exchange effects in HfNX (X = Cl, Br, I)/FeCl2 two-dimensional ferrovalley heterostructures. Appl. Phys. Lett. 120(6), 063103 (2022). https://doi.org/10.1063/5.0080466

    Article  ADS  Google Scholar 

  18. Y.J. Zhang, T. Mori, J.H. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132(18), 6294–6295 (2010). https://doi.org/10.1021/ja101749y

    Article  Google Scholar 

  19. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/Nmat2317

    Article  ADS  Google Scholar 

  20. J. Mahmood, E.K. Lee, M. Jung, D. Shin, I.Y. Jeon, S.M. Jung, H.J. Choi, J.M. Seo, S.Y. Bae, S.D. Sohn, N. Park, J.H. Oh, H.J. Shin, J.B. Baek, Nitrogenated holey two-dimensional structures. Nat. Commun. 6, 6486 (2015). https://doi.org/10.1038/ncomms7486

    Article  ADS  Google Scholar 

  21. J.N. Liang, X.H. Yang, Y. Wang, P. He, H.T. Fu, Y. Zhao, Q.C. Zou, X.Z. An, A review on g-C3N4 incorporated with organics for enhanced photocatalytic water splitting. J. Mater. Chem. A 9(22), 12898–12922 (2021). https://doi.org/10.1039/d1ta00890k

    Article  Google Scholar 

  22. A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, T.M. Aminabhavi, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review. Carbon 149, 693–721 (2019). https://doi.org/10.1016/j.carbon.2019.04.104

    Article  Google Scholar 

  23. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

    Article  Google Scholar 

  24. M.Z. Rahman, C.W. Kwong, K. Davey, S.Z. Qiao, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9(3), 709–728 (2016). https://doi.org/10.1039/c5ee03732h

    Article  Google Scholar 

  25. L. Ju, M. Bie, J. Shang, X. Tang, L.Z. Kou, Janus transition metal dichalcogenides: a superior platform for photocatalytic water splitting. J. Phys. Mater. 3(2), 022004 (2020). https://doi.org/10.1088/2515-7639/ab7c57

    Article  Google Scholar 

  26. P. Mishra, D. Singh, Y. Sonvane, R. Ahuja, Bifunctional catalytic activity of 2D boron monochalcogenides BX (X = S, Se, Te). Mater. Today Energy 27, 101026 (2022). https://doi.org/10.1016/j.mtener.2022.101026

    Article  Google Scholar 

  27. J.J. Wu, M.J. Liu, K. Chatterjee, K.P. Hackenberg, J.F. Shen, X.L. Zou, Y. Yan, J. Gu, Y.C. Yang, J. Lou, P.M. Ajayan, Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv. Mater. Interfaces 3(9), 1500669 (2016). https://doi.org/10.1002/admi.201500669

    Article  Google Scholar 

  28. G.P. Gao, A.P. O’Mullane, A.J. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2017). https://doi.org/10.1021/acscatal.6b02754

    Article  Google Scholar 

  29. W.Y. Lei, T. Zhou, X. Pang, S.X. Xue, Q.L. Xu, Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: progress and prospects. J. Mater. Sci. Technol. 114, 143–164 (2022). https://doi.org/10.1016/j.jmst.2021.10.029

    Article  ADS  Google Scholar 

  30. Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247

    Article  Google Scholar 

  31. M. Tahir, A. Sherryna, R. Mansoor, A.A. Khan, S. Tasleem, B. Tahir, Titanium carbide MXene nanostructures as catalysts and cocatalysts for photocatalytic fuel production: a review. ACS Appl. Nano Mater. 5(1), 18–54 (2022). https://doi.org/10.1021/acsanm.1c03112

    Article  Google Scholar 

  32. H.L.L. Zhuang, R.G. Hennig, Computational search for single-layer transition-metal dichalcogenide photocatalysts. J. Phys. Chem. C 117(40), 20440–20445 (2013). https://doi.org/10.1021/jp405808a

    Article  Google Scholar 

  33. A.Y. Lu, H.Y. Zhu, J. Xiao, C.P. Chuu, Y.M. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y.M. Yang, Y. Wang, D. Sokaras, D. Nordlund, P.D. Yang, D.A. Muller, M.Y. Chou, X. Zhang, L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017). https://doi.org/10.1038/Nnano.2017.100

    Article  Google Scholar 

  34. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D.Q. Er, W.B. Chen, H. Guo, Z.H. Jin, V.B. Shenoy, L. Shi, J. Lou, Janus monolayer transition-metal dichalcogenides. ACS Nano 11(8), 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186

    Article  Google Scholar 

  35. Y.D. Yu, J. Zhou, Z.L. Guo, Z.M. Sun, Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting. ACS Appl. Mater. Inter. 13(24), 28090–28097 (2021). https://doi.org/10.1021/acsami.1c04138

    Article  Google Scholar 

  36. Z. Haman, N. Khossossi, M. Kibbou, I. Bouziani, D. Singh, I. Essaoudi, A. Ainane, R. Ahuja, Janus aluminum oxysulfide Al2OS: a promising 2D direct semiconductor photocatalyst with strong visible light harvesting. Appl. Surf. Sci. 589, 152997 (2022). https://doi.org/10.1016/j.apsusc.2022.152997

    Article  Google Scholar 

  37. H. Liu, L. Gao, Y.F. Xue, Y.J. Ye, Y. Tian, L. Jiang, S.H. He, W.A. Ren, X.X. Shai, T.T. Wei, Y.F. Tian, C.H. Zeng, Two-dimensional semiconducting Ag2X (X = S, Se) with Janus-induced built-in electric fields and moderate band edges for overall water splitting. Appl. Surf. Sci. 597, 153707 (2022). https://doi.org/10.1016/j.apsusc.2022.153707

    Article  Google Scholar 

  38. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  Google Scholar 

  39. T. Bucko, S. Lebegue, J. Hafner, J.G. Angyan, Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Phys Rev B 87(6), 064110 (2013). https://doi.org/10.1103/PhysRevB.87.064110

    Article  ADS  Google Scholar 

  40. F. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  41. Y.K. Zhang, W.T. Yang, Comment on “Generalized gradient approximation made simple.” Phys. Rev. Lett. 80(4), 890–890 (1998). https://doi.org/10.1103/PhysRevLett.80.890

    Article  ADS  Google Scholar 

  42. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003). https://doi.org/10.1063/1.1564060

    Article  ADS  Google Scholar 

  43. M. Marsman, J. Paier, A. Stroppa, G. Kresse, Hybrid functionals applied to extended systems. J. Phys. Condens. Matter 20(6), 064201 (2008). https://doi.org/10.1088/0953-8984/20/6/064201

    Article  ADS  Google Scholar 

  44. X. Gonze, C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55(16), 10355 (1997). https://doi.org/10.1103/PhysRevB.55.10355

    Article  ADS  Google Scholar 

  45. A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78(13), 134106 (2008). https://doi.org/10.1103/PhysRevB.78.134106

    Article  ADS  Google Scholar 

  46. N. Shuichi, Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991). https://doi.org/10.1143/PTPS.103.1

    Article  MathSciNet  Google Scholar 

  47. V. Chakrapani, J.C. Angus, A.B. Anderson, S.D. Wolter, B.R. Stoner, G.U. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318(5855), 1424–1430 (2007). https://doi.org/10.1126/science.1148841

    Article  ADS  Google Scholar 

  48. Z.C. Zhao, C.L. Yang, Q.T. Meng, M.S. Wang, X.G. Ma, Photocatalytic hydrogen production from water splitting with N-doped beta-Ga2O3 and visible light. Spectrochim. Acta A 211, 71–78 (2019). https://doi.org/10.1016/j.saa.2018.11.039

    Article  ADS  Google Scholar 

  49. T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77(23), 233406 (2008). https://doi.org/10.1103/PhysRevB.77.233406

    Article  ADS  Google Scholar 

  50. M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73(4), 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112

    Article  ADS  Google Scholar 

  51. X. Huang, T.R. Paudel, S. Dong, E.Y. Tsymbal, Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys. Rev. B 92(12), 25201 (2015). https://doi.org/10.1103/PhysRevB.92.125201

    Article  ADS  Google Scholar 

  52. X.C. Ma, X. Wu, H.D. Wang, Y.C. Wang, A Janus MoSSe monolayer: a potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate. J. Mater. Chem. A 6(5), 2295–2301 (2018). https://doi.org/10.1039/c7ta10015a

    Article  Google Scholar 

  53. R. Peng, Y.D. Ma, B.B. Huang, Y. Dai, Two- dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J. Mater. Chem. A 7(2), 603–610 (2019). https://doi.org/10.1039/c8ta09177c

    Article  Google Scholar 

  54. J. Bardeen, W. Shockley, Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80(1), 72–80 (1950). https://doi.org/10.1103/PhysRev.80.72

    Article  ADS  MATH  Google Scholar 

  55. J. Wang, H.B. Shu, T.F. Zhao, P. Liang, N. Wang, D. Cao, X.S. Chen, Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Phys. Chem. Chem. Phys. 20(27), 18571–18578 (2018). https://doi.org/10.1039/c8cp02612b

    Article  Google Scholar 

  56. X.Q. Liu, W. Kang, J.H. Zhao, Y. Wang, W. Wang, L. Wang, L. Fang, Q. Chen, M. Zhou, Intrinsic electric field and excellent photocatalytic solar-to-hydrogen efficiency in 2D Janus transition metal dichalcogenide. Phys. Stat. Solidi. R 16(3), 2100417 (2022). https://doi.org/10.1002/pssr.202100417

    Article  Google Scholar 

  57. W.Z. Chen, X.H. Hou, X.Q. Shi, H. Pan, Two-dimensional janus transition metal oxides and chalcogenides: multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl. Mater. Interfaces 10(41), 35289–35295 (2018). https://doi.org/10.1021/acsami.8b13248

    Article  Google Scholar 

  58. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j

    Article  Google Scholar 

  59. Y.D. Yu, J. Zhou, Z.M. Sun, Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 30(47), 2000570 (2020). https://doi.org/10.1002/adfm.202000570

    Article  Google Scholar 

  60. P. Garg, K.S. Rawat, G. Bhattacharyya, S. Kumar, B. Pathak, Hexagonal CuCl monolayer for water splitting: a DFT study. ACS Appl. Nano Mater. 2(7), 4238–4246 (2019). https://doi.org/10.1021/acsanm.9b00699

    Article  Google Scholar 

  61. P.F. Li, W. Zhang, C.H. Liang, X.C. Zeng, Two-dimensional MgX2Se4 (X = Al, Ga) monolayers with tunable electronic properties for optoelectronic and photocatalytic applications. Nanoscale 11(42), 19806–19813 (2019). https://doi.org/10.1039/c9nr07529a

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12274264 and 11974215), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2022MA039 and ZR2021MA105), and the Qingchuang Science and Technology Plan of Shandong Province (Grant No. 2019KJJ014).

Author information

Authors and Affiliations

Authors

Contributions

JW: investigation, formal analysis, and writing—original draft. JL: conceptualization, supervision, and writing—review and editing. XZ: formal analysis and data curation. GH: formal analysis and funding acquisition. XY: formal analysis and project administration. JR: supervision, writing—review and editing, and funding acquisition.

Corresponding authors

Correspondence to Xiaobo Yuan or Junfeng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lu, J., Zhao, X. et al. Two-dimensional Janus AsXY (X = Se, Te; Y = Br, I) monolayers for photocatalytic water splitting. Eur. Phys. J. B 96, 17 (2023). https://doi.org/10.1140/epjb/s10051-023-00486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00486-2

Navigation