Skip to main content
Log in

A λ-lemma for normally hyperbolic invariant manifolds

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Let N be a smooth manifold and f: NN be a C , ⩾ 2 diffeomorphism. Let M be a normally hyperbolic invariant manifold, not necessarily compact. We prove an analogue of the λ-lemma in this case. Applications of this result are given in the context of normally hyperbolic invariant annuli or cylinders which are the basic pieces of all geometric mechanisms for diffusion in Hamiltonian systems. Moreover, we construct an explicit class of three-degree-of-freedom near-integrable Hamiltonian systems which satisfy our assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I., Instability of Dynamical Systems with Several Degrees of Freedom, Soviet Math. Dokl., 1964, vol. 5, no. 3, pp. 581–585; see also: Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 1, pp. 9–12.

    Google Scholar 

  2. Berghoff, M., S 1-Equivariant Morse Cohomology, arXiv:1204.2802 (2012).

    Google Scholar 

  3. Bourgain, J., On Diffusion in High-Dimensional Hamiltonian Systems and PDE, J. Anal. Math., 2000, vol. 80, no. 1, pp. 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bronstein, I.U. and Kopanskiĭ, A.Ya., Smooth Invariant Manifolds and Normal Forms, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 7, River Edge,N.J.: World Sci. Publ., 1994.

    MATH  Google Scholar 

  5. Beigie, D., Leonard, A., and Wiggins, S., Chaotic Transport in the Homoclinic and Heteroclinic Tangle Regions of Quasiperiodically Forced Two-Dimensional Dynamical Systems, Nonlinearity, 1991, vol. 4, no. 3, pp. 775–819.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cresson, J., Instabilité des systèmes hamiltoniens presques intégrables, PhD Thesis, Observatoire de Paris, Paris VI, 1997, 188 pp.

    Google Scholar 

  7. Cresson, J., A λ-Lemma for Partially Hyperbolic Tori and the Obstruction Property, Lett. Math. Phys., 1997, vol. 42, no. 4, pp. 363–377.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cresson, J., Un λ-lemme pour des tores partiellement hyperboliques, C. R. Acad. Sci. Paris, Sér. 1, 2000, vol. 331, pp. 65–70.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cresson, J., Symbolic Dynamics and Arnold Diffusion, J. Differential Equations, 2003, vol. 187, no. 2, pp. 269–292.

    Article  MATH  MathSciNet  Google Scholar 

  10. Delshams, A., de la Llave, R., and Seara, T. M., A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model, Mem. Amer. Math. Soc., 2006, vol. 179, no. 844, 141 pp.

    Google Scholar 

  11. Enciso, A. and Peralta-Salas, D., Morse-Type Inequalities for Dynamical Systems and the Witten Laplacian, J. Differential Equations, 2008, vol. 244, no. 11, pp. 2804–2819.

    Article  MATH  MathSciNet  Google Scholar 

  12. Fontich, E. and Martín, P., Differentiable Invariant Manifolds for Partially Hyperbolic Tori and a Lambda Lemma, Nonlinearity, 2000, vol. 13, no. 5, pp. 1561–1593.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gelfreich, V. and Turaev, D., Arnold Diffusion in a Priory Chaotic Hamiltonian Systems, arXiv:1406.2945 (2014).

    Google Scholar 

  14. Gidea, M. and de la Llave, R., Topological Methods in the Instability of Hamiltonian Systems, Preprint, 2005.

    Google Scholar 

  15. Graff, S.M., On the Conservation of Hyperbolic Invariant Tori for Hamiltonian Systems, J. Differential Equations, 1974, vol. 15, no. 1, pp. 1–69.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hirsch, M.W., Pugh, C.C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583, Berlin: Springer, 1977.

    MATH  Google Scholar 

  17. Lochak, P. and Marco, J.-P., Diffusion Time and Stability Exponents for Nearly Integrable Hamiltonian Systems, Cent. Eur. J. Math., 2005, vol. 3, no. 3, pp. 342–397.

    Article  MATH  MathSciNet  Google Scholar 

  18. Lochak, P., Arnold Diffusion: A Compendium of Remarks and Questions, in Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaro’, 1995), C. Simó (Ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Dordrecht: Kluwer, 1999, pp. 168–183.

    Chapter  Google Scholar 

  19. Lomelí, H. E., Meiss, J.D., and Ramírez-Ros, R., Canonical Melnikov Theory for Diffeomorphisms, Nonlinearity, 2008, vol. 21, no. 3, pp. 485–508.

    Article  MATH  MathSciNet  Google Scholar 

  20. Marco, J.-P., Transition le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques, Ann. Inst. H. Poincaré Phys. Théor., 1996, vol. 64, no. 2, pp. 205–252.

    MATH  MathSciNet  Google Scholar 

  21. Meyer, K. R. and Sell, G. R., Mel’nikov Transforms, Bernoulli Bundles, and Almost Periodic Perturbations, Trans. Amer. Math. Soc., 1989, vol. 314, no. 1, pp. 63–105.

    MATH  MathSciNet  Google Scholar 

  22. Moeckel, R., Generic Drift on Cantor Sets of Annuli, in Celestial Mechanics (Evanston, Ill., 1999), Contemp. Math., vol. 292, Providence, R.I.: AMS, 2002, pp. 163–171.

    Chapter  Google Scholar 

  23. Moeckel, R., Transition Tori in the Five-Body Problem, J. Differential Equations, 1996, vol. 129, no. 2, pp. 290–314.

    Article  MATH  MathSciNet  Google Scholar 

  24. de Oliveira, H.P., Ozorio de Almeida, A. M., Damião Soares, I., and Tonini, E.V., Homoclinic Chaos in the Dynamics of the General Bianchi-IX Model, arXiv:gr-qc/0202047 (2002).

    Google Scholar 

  25. Palis, J. and de Melo, W., Geometric Theory of Dynamical Systems: An Introduction, New York: Springer, 1982.

    Book  MATH  Google Scholar 

  26. Sabbagh, L., An Inclination Lemma for Normally Hyperbolic Manifolds with an Application to Diffusion, Ergodic Theory Dynam. Systems, 2014 (in press).

    Google Scholar 

  27. Shil’nikov, L.P., On the Question of the Structure of the Neighborhood of a Homoclinic Tube of an Invariant Torus, Soviet Math. Dokl., 1968, vol. 9, no. 3, pp. 624–628; see also: Dokl. Akad. Nauk SSSR, 1968, vol. 180, pp. 286–289.

    Google Scholar 

  28. Waalkens, H., Burbanks, A., and Wiggins, S., Phase Space Conduits for Reaction in Multidimensional Systems: HCN Isomerization in Three Dimensions, J. Chem. Phys., 2004, vol. 121, no. 13, pp. 6207–6225.

    Article  Google Scholar 

  29. Waalkens, H., Burbanks, A., and Wiggins, S., Escape from Planetary Neighborhoods, Mon. Not. R. Astron. Soc., 2005, vol. 361, no. 3, pp. 763–775.

    Article  Google Scholar 

  30. Wiggins, S., Global Bifurcations and Chaos: Analytical Methods, Appl. Math. Sci., vol. 73, New York: Springer, 1988.

    MATH  Google Scholar 

  31. Wiggins, S., Normally Hyperbolic Manifolds in Dynamical Systems, Appl. Math. Sci., vol. 105, New York: Springer, 1994.

    Book  MATH  Google Scholar 

  32. Wiggins, S., Chaotic Transport in Dynamical Systems, Interdiscip. Appl. Math., vol. 2, New York: Springer, 1992.

    MATH  Google Scholar 

  33. Wiggins, S., On the Geometry of Transport in Phase Space: 1. Transport in k-Degree-of-Freedom Hamiltonian Systems, 2 ≤ k < ∞, Phys. D, 1990, vol. 44, no. 3, pp. 471–501.

    Article  MATH  MathSciNet  Google Scholar 

  34. Wiggins, S., Wiesenfeld, L., Jaffé, C., and Uzer, T., Impenetrable Barriers in Phase Space, Phys. Rev. Lett., 2001, vol. 86, no. 24, pp. 5478–5481.

    Article  Google Scholar 

  35. Xia, Zh., Arnol’d Diffusion and Oscillatory Solutions in the Planar Three-Body Problem, J. Differential Equations, 1994, vol. 110, no. 2, pp. 289–321.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky Cresson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cresson, J., Wiggins, S. A λ-lemma for normally hyperbolic invariant manifolds. Regul. Chaot. Dyn. 20, 94–108 (2015). https://doi.org/10.1134/S1560354715010074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354715010074

MSC2010 numbers

Keywords

Navigation