Skip to main content
Log in

Influence of Gravity on Cardiac Performance

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Results obtained by the investigators in ground-based experiments and in two parabolic flight series of tests aboard the NASA KC-135 aircraft with a hydraulic simulator of the human systemic circulation have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume of 20–50%. A corresponding drop in stroke volume (SV) and cardiac output (CO) was observed over a range of atrial pressures (AP), representing a rightward shift of the classic CO versus AP cardiac function curve. These results are in agreement with echocardiographic experiments performed on space shuttle flights, where an average decrease in SV of 15% was measured following a three-day period of adaptation to weightlessness. The similarity of behavior of the hydraulic model to the human system suggests that the simple physical effects of the lack of hydrostatic pressure may be an important mechanism for the observed changes in cardiac performance in astronauts during the weightlessness of space flight. © 1998 Biomedical Engineering Society.

PAC98: 8765+y, 8745Hw

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bagian, J. P., and P. Hackett. Cerebral blood flow: Comparison of ground-based and spaceflight data and correlation with space adaptation syndrome. J. Clin. Pharmacol.31:1036- 1040, 1991.

    Google Scholar 

  2. Blomqvist, C. G., and H. L. Stone. Cardiovascular adjustments to gravitational stress. In: Handbook of Physiology, edited by J. T. Shepherd et al.Bethesda, MD: Am. Physiol. Soc., 1982, Sec. 2, pp. 1025-1063.

    Google Scholar 

  3. Buckey, J. C., F. A. Gaffney, L. D. Lane, B. D. Levine, D. E. Watenpaugh, and C. G. Blomqvist. Central venous pressure in space. N. Engl. J. Med.328:1853-1854, 1993.

    Google Scholar 

  4. Bungo, M. W., J. B. Charles, and P. C. Johnson. Cardiovascular deconditioning during spaceflight and the use of saline as a countermeasure to orthostatic intolerance. Aviat., Space Environ. Med.56:985-990, 1985.

    Google Scholar 

  5. Bungo, M. W. The cardiopulmonary system. In: Space Physiology and Medicine, 2nd ed. Philadelphia, PA: Lea & Febiger, 1989, pp. 179-201.

    Google Scholar 

  6. Burns, J. W. G-protection basis/acceleration physiology. AGARD AMP Lecture Series on Current concepts on G protection research and development, OH, May 15-16, 1995 (unpublished).

  7. Catterson, A. D., E. P. McCutcheon, H. A. Minners, and R. A. Pollard. Aeromedical observations. In: Mercury Project Summary including results of the Fourth Manned Orbital Flight, May 15 and 16, 1963, SP-45. Washington, DC: NASA, 1963, pp. 299-326.

    Google Scholar 

  8. Charles, J. B., M. W. Bungo, B. Ammerman, K. L. Kreutzberg, and E. M. Youmans. Hemodynamic alterations during the space shuttle prelaunch posture. Aviat., Space Environ. Med.58:491, 1987.

    Google Scholar 

  9. Charles, J. B., and C. M. Lathers. Cardiovascular adaptation to spaceflight. J. Clin. Pharmacol.31:1010-1023, 1991.

    Google Scholar 

  10. Cintron, N. M., H. W. Lane, and C. S. Leach. Metabolic consequences of fluid shifts induced by microgravity. Physiologist (Suppl)33:S16-S17, 1990.

    Google Scholar 

  11. Convertino, V. A. Physiological adaptations to weightlessness: Effects on exercise and work performance. In: Exercise and Sport Sciences Reviews, edited by K. B. Pandolf. Baltimore, MD: Wiliams and Wilkins, 1990, Vol. 18, pp. 119- 167.

    Google Scholar 

  12. Dunworth, J. N., J. M. Evans, J. B. Charles, and C. F. Knapp. Cardiovascular responses to the prelaunch position followed by 20 h of 6° head down bedrest (plus lasix). Aviat., Space Environ. Med.61:496, 1990.

    Google Scholar 

  13. Estenne, M., M. Gorini, A. Van Muylem, V. Ninane, and M. Paiva. Rib cage shape and motion in microgravity. J. Appl. Physiol.71:946-954, 1992.

    Google Scholar 

  14. Fung, Y. C., Biodynamics: Circulation. New York: Springer-Verlag, 1984.

    Google Scholar 

  15. Gauer, O. N., and H. L. Thron. Postural change in the circulation. In: Handbook of Physiology, edited by W. F. Hamilton and P. Dow. Washington, DC: American Physiological Society, 1965, Sec. 2, Vol. 3, p. 2409.

    Google Scholar 

  16. Gazenko, O. G., A. I. Grigoryev, S. A. Bugrov, V. V. Yegorov, V. V. Bogomolov, I. B. Kozlovskaya, and I. K. Tarasov. Review of the major results of medical research during the flight of the second prime crew of the Mir Space Station. Kosm. Biol. Aviakosm Med.23:3-11, 1990.

    Google Scholar 

  17. Gibson, E. G., Skylab crew observations. In: Biomedical Results from Skylab, SP-377, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: NASA, 1977, Chap. 3, pp. 22-26.

    Google Scholar 

  18. Huntoon, C. Human physiology in microgravity: Spacelab SLS-1 metabolic results. FASEB Meeting, Anaheim, CA, 1992 (unpublished).

  19. Jennings, T., J. Seaworth, D. Ratino, L. Tripp, L. Howell, and C. Goodyear. The effect of 1Gz acceleration on cardiac volumes determined by two-dimensional echocardiography. SAFE J.15:4-9, 1986.

    Google Scholar 

  20. Johns, J. P., M. N. Vernalis, J. M. Karemaker, and R. D. Latham. Doppler evaluation of cardiac filling and ejection properties in man during parabolic flight. J. Appl. Physiol.76:2621-2626, 1994.

    Google Scholar 

  21. Leach, C. S., and P. C. Rambaut. Biochemical responses of Skylab crewmen. In: Biomedical Results from Skylab, SP-377, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: NASA, 1977, Chap. 23, pp. 204-216.

    Google Scholar 

  22. Leach, C. S., and P. C. Johnson. Influence of spaceflight on erythrokinetics in man. Science225:216-218, 1984.

    Google Scholar 

  23. Leach, C. S., N. M. Cintron, and J. M. Krauhs. Metabolic changes observed in astronauts. J. Clin. Pharmacol.31:921- 927, 1991.

    Google Scholar 

  24. Levine, B. D., J. C. Buckey, F. A. Gaffney, L. D. Lane, D. E. Watenpaugh, S. J. Wright, and C. G. Blomqvist. Orthostatic intolerance following spaceflight. Circulation86:368, 1992.

    Google Scholar 

  25. Michel, E. L., J. A. Rummel, C. F. Sawin, M. C. Buderer, and J. D. Lem. Results of Skylab medical experiment M171-metabolic activity. In: Biomedical Results from Skylab, SP-377, edited by R. S. Johnston and L. F. Dietlein. Washington, DC: NASA, 1977, Chap. 36, pp. 372-387.

    Google Scholar 

  26. Norsk, P., N. Foldager, F. Bonde-Petersen, B. Elmann-Larsen, and T. S. Johansen. Central venous pressure in humans during short periods of weightlessness. J. Appl. Physiol.63:2433-2437, 1987.

    Google Scholar 

  27. O'Leary, D. S., G. M. Panatalos, and M. K. Sharp. Feedback control system of mean aortic pressure in a dynamic model of the cardiovascular system. ASAIO J.(accepted for publication).

  28. Paiva, M., M. Estenne, and L. A. Engel. Lung volumes, chest wall configuration and pattern of breathing in microgravity. J. Appl. Physiol.67:1542-1550, 1989.

    Google Scholar 

  29. Charles, J. B., G. M. Pantalos, B. S. Bennet, S. D. Everett, M. K. Sharp, T. E. Bennet, and T. Schurfranz. The effect of gravitational acceleration on ventricular filling: Diastolic ventricular function in weightlessness and 1-G: Preliminary results. In: Research and Development Annual Report 1994, NASA Technical Memorandum 104787. Washington, DC: NASA, 1994, pp. 2–3 to 2-8.

    Google Scholar 

  30. Pantalos, G. M., M. K. Sharp, J. K. Hayes, S. J. Woodruff, D. S. O'Leary, and K. J. Gillars. A biomechanical mechanism of cardiovascular adaptation to weightlessness. In: Abstracts of the AIAA/NASA Life Sciences and Space Medicine Conference 96, Houston, 1996, pp. 130-131.

  31. Pantalos, G. M., J. Mathias, M. K. Sharp, D. Watenpaugh, J. Buckey, S. Parnis, A. Hargens, and W. Thornton. Variation in esophageal and abdominal pressure in humans during parabolic flight. Am. Soc. Grav. Space Bio. Bull.10:33, 1996.

    Google Scholar 

  32. Pourcelot, L., P. H. Arbeille, J. M. Pottier, F. Patat, P. Mignier, A. Guell, and C. Gharib. Ultrasonic study of early cardiovascular adaptation to zero gravity. In: Proceedings of the Second European Symposium Life Science Research in Space, ESA SP-212. European Space Agency, 1984, pp. 119-123.

  33. Robison, P., G. M. Pantalos, and D. B. Olsen. Pneumatically powered blood pumps used as a bridge to transplantation. Crit. Care Nursing Clinics North Am.1:485-494, 1989.

    Google Scholar 

  34. Rosenberg, G., W. M. Phillips, D. L. Landis, and W. S. Pierce. Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO J.4:41-49, 1981.

    Google Scholar 

  35. Rubal, B. J., D. S. Gantt, J. J. Bird, and T. A. Wilkens. Effects of transition from supine to upright position on central hemodynamics in patients with chest pain syndrome. Physiologist (Suppl. 1)32:S33-34, 1989.

    Google Scholar 

  36. Sharp, M. K., and R. K. Dharmalingam. Development of a hydraulic model of the human systemic circulation. ASAIO J.(accepted for publication).

  37. Smith, J. J., Circulatory Response to the Upright Posture. Boca Raton, FL: CRC Press, 1990.

    Google Scholar 

  38. Thornton, W. E., G. W. Hoffler, and J. A. Rummel. Anthropometric changes and fluid shifts. In: Biomedical Results of Skylab, NASA SP-377, edited by R. S. Johnston and L. F. Deitlein. Washington, DC: NASA, 1977, Chap. 13, pp. 330- 338.

    Google Scholar 

  39. Turchaninova, V. F., A. D. Yegorov, and M. V. Domracheve. Central and regional hemodynamics on long-term space flights. Kosm. Biol. Aviakosm. Med.23:19-26, 1989.

    Google Scholar 

  40. Videbaek, R., and P. Norsk. Atrial distension in humans during weightlessness induced by parabolic flights. J. Appl. Physiol.83:1862-1866, 1997.

    Google Scholar 

  41. Watenpaugh, D. E., and A. R. Hargens. The cardiovascular system in microgravity. In: Handbook of Physiology-Environmental Physiology, edited by J. T. Shepherd et al.Bethesda, MD: Am. Physiol. Soc., 1995, Chap. 29, pp. 631- 674.

    Google Scholar 

  42. West, J. B., and F. L. Matthews. Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol.32:332-345, 1972.

    Google Scholar 

  43. White, R. K., G. M. Pantalos, and D. B. Olsen. Total artifi-cial heart development at the University of Utah: The Utah-100 and electrohydraulic cardiac replacement devices. In: Cardiac Mechanical Assistance Beyond Balloon Pumping, edited by S. Quall. St. Louis: Mosby Yearbook, 1992, pp. 181-193.

    Google Scholar 

  44. Wilson, T. A., and S. Liu. Effect of acceleration on the chest wall. J. Appl. Physiol.76:1242-1256, 1994.

    Google Scholar 

  45. Wing, P. C., I. K. Y. Tsang, L. Susak, F. Gagnon, R. Gagnon, and J. E. Potts. Back pain and spinal changes in microgravity. Orthop. Clin. N. Am.22:255-262, 1991.

    Google Scholar 

  46. Wood, E. H. Hydrostatic homeostatic effects during changing force environments. Aviat., Space Environ. Med.61:366- 373, 1990.

    Google Scholar 

  47. Woodruff, S. J., M. K. Sharp, and G. M. Pantalos. Compact compliance chamber design for the study of cardiac performance in microgravity. ASAIO J.43:316-320, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantalos, G.M., Sharp, M.K., Woodruff, S.J. et al. Influence of Gravity on Cardiac Performance. Annals of Biomedical Engineering 26, 931–943 (1998). https://doi.org/10.1114/1.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.30

Navigation