Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Josephson diode effect derived from short-range coherent coupling

Abstract

Typical superconducting materials have both time-reversal symmetry and inversion symmetry. Devices that break these symmetries are expected to have exotic phenomena such as the superconducting diode effect, which can provide lossless rectification. Here, we present a device comprising one Josephson junction coupled to another that exhibits the superconducting diode effect. We show that the observed effect can be controlled non-locally based on the phase difference of the adjacent junction. These results indicate that the time-reversal and spatial-inversion symmetries of a Josephson junction are broken by the coherent coupling to an adjacent junction, and this enables the engineering of superconducting phenomena mediated by interaction among Josephson junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device concept and coherent coupling of JJs.
Fig. 2: Observed SDE.
Fig. 3: Symmetric conditions of JJ1 and JJ2 that generate the SDE.

Data availability

The data that support the findings of this study are available from the Zenodo repository at https://doi.org/10.5281/zenodo.8024898. Source data are provided with this paper.

References

  1. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

  2. Raissi, F. & Nordman, J. E. Josephson fluxonic diode. Appl. Phys. Lett. 65, 1838–1840 (1994).

  3. Carapella, G. & Costabile, G. Ratchet effect: demonstration of a relativistic fluxon diode. Phys. Rev. Lett. 87, 077002 (2001).

    Article  ADS  Google Scholar 

  4. Beck, M. et al. High-efficiency deterministic Jjosephson vortex ratchet. Phys. Rev. Lett. 95, 090603 (2005).

    Article  ADS  Google Scholar 

  5. Sterck, A., Kleiner, R. & Koelle, D. Three-junction SQUID rocking ratchet. Phys. Rev. Lett. 95, 177006 (2005).

    Article  ADS  Google Scholar 

  6. Sterck, A., Koelle, D. & Kleiner, R. Rectification in a stochastically driven three-junction SQUID rocking ratchet. Phys. Rev. Lett. 103, 047001 (2009).

    Article  ADS  Google Scholar 

  7. Sickinger, H. et al. Experimental evidence of a φ Josephson junction. Phys. Rev. Lett. 109, 107002 (2012).

    Article  ADS  Google Scholar 

  8. Menditto, R. et al. Tunable φ Josephson junction ratchet. Phys. Rev. E 94, 042202 (2016).

    Article  ADS  Google Scholar 

  9. Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

  10. Turini, B. et al. Josephson diode effect in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).

  11. Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18, 1228–1233 (2022).

  12. Thompson, M. D. et al. Graphene-based tunable SQUIDs. Appl. Phys. Lett. 110, 162602 (2017).

    Article  ADS  Google Scholar 

  13. Murphy, A. & Bezryadin, A. Asymmetric nanowire SQUID: linear current-phase relation, stochastic switching, and symmetries. Phys. Rev. B 96, 094507 (2017).

    Article  ADS  Google Scholar 

  14. Souto, R. S., Leijnse, M. & Schrade, C. The Josephson diode effect in supercurrent interferometers. Phys. Rev. Lett. 129, 267702 (2022).

  15. Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    Article  ADS  Google Scholar 

  16. Qin, F. et al. Superconductivity in a chiral nanotube. Nat. Commun. 8, 14465 (2017).

    Article  ADS  Google Scholar 

  17. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

  18. Miyasaka, Y. et al. Observation of nonreciprocal superconducting critical field. Appl. Phys. Express 14, 073003 (2021).

    Article  ADS  Google Scholar 

  19. Diez-Merida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

  20. Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

  21. Pillet, J.-D., Benzoni, V., Griesmar, J., Smirr, J.-L. & Girit, Ç. Ö. Nonlocal Josephson effect in Andreev molecules. Nano Lett. 19, 7138–7143 (2019).

  22. Kornich, V., Barakov, H. S. & Nazarov, Y. V. Fine energy splitting of overlapping Andreev bound states in multiterminal superconducting nanostructures. Phys. Rev. Res. 1, 033004 (2019).

    Article  Google Scholar 

  23. Kornich, V., Barakov, H. S. & Nazarov, Y. V. Overlapping Andreev states in semiconducting nanowires: competition of one-dimensional and three-dimensional propagation. Phys. Rev. B 101, 195430 (2020).

    Article  ADS  Google Scholar 

  24. Matsuo, S. et al. Observation of nonlocal Josephson effect on double InAs nanowires. Commun. Phys. 5, 221 (2022).

    Article  Google Scholar 

  25. Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 1966 (2012).

    Article  Google Scholar 

  26. Draelos, A. W. et al. Supercurrent flow in multiterminal graphene Josephson junctions. Nano Lett. 19, 1039–1043 (2019).

  27. Pankratova, N. et al. Multiterminal Josephson effect. Phys. Rev. X 10, 031051 (2020).

    Google Scholar 

  28. Graziano, G. V., Lee, J. S., Pendharkar, M., Palmstrøm, C. J. & Pribiag, V. S. Transport studies in a gate-tunable three-terminal Josephson junction. Phys. Rev. B 101, 054510 (2020).

    Article  ADS  Google Scholar 

  29. Arnault, E. G. et al. Dynamical stabilization of multiplet supercurrents in multiterminal Josephson junctions. Nano Lett. 22, 7073–7079 (2022).

  30. Chiles, J. et al. Nonreciprocal supercurrents in a field-free graphene Josephson triode. Nano Lett. 23, 5257–5263 (2023).

  31. Zhang, F. et al. Andreev processes in mesoscopic multi-terminal graphene Josephson junctions. Phys. Rev. B 107, L140503 (2023).

  32. Gupta, M. et al. Superconducting diode effect in a three-terminal Josephson device. Nat. Commun. 14, 3078 (2023).

  33. Nichele, F. et al. Scaling of Majorana zero-bias conductance peaks. Phys. Rev. Lett. 119, 136803 (2017).

    Article  ADS  Google Scholar 

  34. Kjaergaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure. Nat. Commun. 7, 12841 (2016).

    Article  ADS  Google Scholar 

  35. Kjaergaard, M. et al. Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction. Phys. Rev. Appl. 7, 034029 (2017).

    Article  ADS  Google Scholar 

  36. Golod, T. & Krasnov, V. M. Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity. Nat. Commun. 13, 3658 (2022).

    Article  ADS  Google Scholar 

  37. den Hartog, S. G., Kapteyn, C. M. A., van Wees, B. J., Klapwijk, T. M. & Borghs, G. Transport in multiterminal normal-superconductor devices: reciprocity relations, negative and nonlocal resistances, and reentrance of the proximity effect. Phys. Rev. Lett. 77, 4954 (1996).

    Article  ADS  Google Scholar 

  38. Mélin, R. & Feinberg, D. Sign of the crossed conductances at a ferromagnet/superconductor/ferromagnet double interface. Phys. Rev. B 70, 174509 (2004).

    Article  ADS  Google Scholar 

  39. Russo, S., Kroug, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal Andreev reflection. Phys. Rev. Lett. 95, 027002 (2005).

    Article  ADS  Google Scholar 

  40. Buzdin, A. & Koshelev, A. E. Periodic alternating 0- and π-junction structures as realization of φ-Josephson junctions. Phys. Rev. B 67, 220504 (2003).

  41. Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    Article  ADS  Google Scholar 

  42. Tanaka, Y., Yokoyama, T. & Nagaosa, N. Manipulation of the Majorana fermion, Andreev reflection, and Josephson current on topological insulators. Phys. Rev. Lett. 103, 107002 (2009).

    Article  ADS  Google Scholar 

  43. Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson current in junctions with spin polarizing quantum point contacts. Phys. Rev. Lett. 101, 107001 (2008).

    Article  ADS  Google Scholar 

  44. Yokoyama, T., Eto, M. & Nazarov, Y. V. Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014).

    Article  ADS  Google Scholar 

  45. Szombati, D. B. et al. Josephson ϕ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).

  46. Mayer, W. et al. Gate controlled anomalous phase shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).

    Article  ADS  Google Scholar 

  47. Goldobin, E. et al. Memory cell based on a φ Josephson junction. Appl. Phys. Lett. 102, 242602 (2013).

    Article  ADS  Google Scholar 

  48. Pal, S. & Benjamin, C. Quantized Josephson phase battery. EPL (Europhys. Lett.) 126, 57002 (2019).

    Article  ADS  Google Scholar 

  49. Strambini, E. et al. A Josephson phase battery. Nat. Nanotechnol. 15, 656–660 (2020).

  50. Strambini, E. et al. The ω-SQUIPT as a tool to phase-engineer Josephson topological materials. Nat. Nanotechnol. 11, 1055–1059 (2016).

Download references

Acknowledgements

S.M. and S.T. acknowledge a JSPS Grant-in-Aid for Scientific Research (S) (Grant No. JP19H05610). S.M. acknowledges JST PRESTO (Grant No. JPMJPR18L8), JST FOREST (Grant No. JPMJFR223A), Advanced Technology Institute Research Grants and the Ozawa-Yoshikawa Memorial Electronics Research Foundation. T.Y. acknowledges JSPS Grant-in-Aid for Early-Career Scientists (Grant No. 18K13484).

Author information

Authors and Affiliations

Authors

Contributions

S.M. designed the experiments. T.L., S.G., G.C.G., and M.J.M. grew wafers to form InAs 2DEG quantum wells covered with epitaxial aluminium. S.M. fabricated the devices. S.M. and T.I. performed measurements. S.M., T.I., Y.S. and S.T. analysed the data. T.Y. performed numerical calculations. S.T. supervised the study.

Corresponding authors

Correspondence to Sadashige Matsuo or Seigo Tarucha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Morteza Kayyalha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9 and Figs. 1–14.

Source data

Source Data Figs. 1–3

Image files and the source data for Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, S., Imoto, T., Yokoyama, T. et al. Josephson diode effect derived from short-range coherent coupling. Nat. Phys. 19, 1636–1641 (2023). https://doi.org/10.1038/s41567-023-02144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02144-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing