Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable photonic heat transport in a quantum heat valve

Abstract

Quantum thermodynamics is emerging both as a topic of fundamental research and as a means to understand and potentially improve the performance of quantum devices1,2,3,4,5,6,7,8,9,10. A prominent platform for achieving the necessary manipulation of quantum states is superconducting circuit quantum electrodynamics (QED)11. In this platform, thermalization of a quantum system12,13,14,15 can be achieved by interfacing the circuit QED subsystem with a thermal reservoir of appropriate Hilbert dimensionality. Here we study heat transport through an assembly consisting of a superconducting qubit16 capacitively coupled between two nominally identical coplanar waveguide resonators, each equipped with a heat reservoir in the form of a normal-metal mesoscopic resistor termination. We report the observation of tunable photonic heat transport through the resonator–qubit–resonator assembly, showing that the reservoir-to-reservoir heat flux depends on the interplay between the qubit–resonator and the resonator–reservoir couplings, yielding qualitatively dissimilar results in different coupling regimes. Our quantum heat valve is relevant for the realization of quantum heat engines17 and refrigerators, which can be obtained, for example, by exploiting the time-domain dynamics and coherence of driven superconducting qubits18,19. This effort would ultimately bridge the gap between the fields of quantum information and thermodynamics of mesoscopic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum heat valve design.
Fig. 2: Fundamental excitations of the resonator-qubit-resonator assembly.
Fig. 3: Modulation of photonic heat transport.
Fig. 4: Quantum heat valve performance.

Similar content being viewed by others

References

  1. Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016).

    Article  ADS  Google Scholar 

  2. Goold, J., Huber, M., Riera, A., del Rio, L. & Skrzypczyk, P. The role of quantum information in thermodynamics—a topical review. J. Phys. A 49, 143001 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. Martínez-Pérez, M. J. & Giazotto, F. The Josephson heat interferometer. Nature 492, 401–405 (2012).

    Article  ADS  Google Scholar 

  4. Pekola, J. P. Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 118–123 (2015).

    Article  Google Scholar 

  5. Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–604 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  6. Schwab, K., Henriksen, E., Worlock, J. & Roukes, M. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  ADS  Google Scholar 

  7. Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    Article  ADS  Google Scholar 

  8. Sivre, E. et al. Heat Coulomb blockade of one ballistic channel. Nat. Phys. 14, 145–148 (2018).

    Article  Google Scholar 

  9. Cottet, N. et al. Observing a quantum Maxwell demon at work. Proc. Natl Acad. Sci. USA 114, 7561–7564 (2017).

    Article  ADS  Google Scholar 

  10. Partanen, M. et al. Flux-tunable heat sink for quantum electric circuits. Sci. Rep. 8, 6325 (2018).

    Article  ADS  Google Scholar 

  11. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  12. Neill, C. et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys. 12, 1037–1041 (2016).

    Article  Google Scholar 

  13. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994).

    Article  ADS  Google Scholar 

  14. Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    Article  ADS  Google Scholar 

  15. Reimann, P. Eigenstate thermalization: Deutsch’s approach and beyond. New J. Phys. 17, 055025 (2015).

    Article  ADS  Google Scholar 

  16. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A. 76, 042319 (2007).

    Article  ADS  Google Scholar 

  17. Roßnagel, J. et al. A single atom heat engine. Science 352, 325–329 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. Kosloff, R. & Levy, A. Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65, 365–393 (2014).

    Article  ADS  Google Scholar 

  19. Karimi, B. & Pekola, J. P. Otto refrigerator based on a superconducting qubit: Classical and quantum performance. Phys. Rev. B 94, 184503 (2016).

    Article  ADS  Google Scholar 

  20. Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).

    Article  ADS  Google Scholar 

  21. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    Article  ADS  Google Scholar 

  22. Partanen, M. et al. Quantum-limited heat conduction over macroscopic distances. Nat. Phys. 12, 460–464 (2016).

    Article  Google Scholar 

  23. Pothier, H., Gueron, S., Birge, N. O., Esteve, D. & Devoret, M. H. Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490 (1997).

    Article  ADS  Google Scholar 

  24. Gasparinetti, S. et al. Fast electron thermometry towards ultra-sensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015).

    Article  ADS  Google Scholar 

  25. Govenius, J. et al. Microwave nanobolometer based on proximity Josephson junctions. Phys. Rev. B 90, 064505 (2014).

    Article  ADS  Google Scholar 

  26. Tan, K. Y. et al. Quantum-circuit refrigerator. Nat. Comm. 8, 15189 (2017).

    Article  ADS  Google Scholar 

  27. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  ADS  Google Scholar 

  28. Pendry, J. B. Quantum limits to the flow of information and entropy. J. Phys. A 16, 2161–2172 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  29. Bianchetti, A. R. Control and Readout of a Superconducting Artificial Atom. PhD thesis, ETH Zurich (2010).

Download references

Acknowledgements

This work was funded through Academy of Finland grants 297240, 312057 and 303677 and from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) programme and Marie Sklodowska-Curie actions (grant agreements 742559 and 766025). This work was supported by Centre for Quantum Engineering (CQE) at Aalto University. We acknowledge the facilities and technical support of Otaniemi research infrastructure for Micro and Nanotechnologies (OtaNano), and VTT Technical Research Center for sputtered Nb films. We acknowledge M. Meschke for technical help and O.-P. Saira for useful discussions in the initial stages of this work. We thank D. Golubev and Y. Galperin for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by J.P. and B.K., with contributions from C.D.C. A.R. performed the experiment. A.R., J.S. and Y.-C.C. designed and fabricated the samples. Data analysis was performed by A.R. based on theoretical models conceived and solved by J.P. and B.K. Y.-C.C. performed the spectroscopy measurements. J.T.P. provided technical support in fabrication, low-temperature set-ups and measurements. All authors have been involved in the discussion of scientific results and implications of this work. The manuscript was written by A.R. with contributions from J.P., B.K. and J.S.

Corresponding author

Correspondence to Alberto Ronzani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronzani, A., Karimi, B., Senior, J. et al. Tunable photonic heat transport in a quantum heat valve. Nature Phys 14, 991–995 (2018). https://doi.org/10.1038/s41567-018-0199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0199-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing