Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel

Abstract

Multilayer van der Waals (vdW) film materials have attracted extensive interest from the perspective of both fundamental research1,2,3 and technology4,5,6,7. However, the synthesis of large, thick, single-crystal vdW materials remains a great challenge because the lack of out-of-plane chemical bonds weakens the epitaxial relationship between neighbouring layers8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31. Here we report the continuous epitaxial growth of single-crystal graphite films with thickness up to 100,000 layers on high-index, single-crystal nickel (Ni) foils. Our epitaxial graphite films demonstrate high single crystallinity, including an ultra-flat surface, centimetre-size single-crystal domains and a perfect AB-stacking structure. The exfoliated graphene shows excellent physical properties, such as a high thermal conductivity of ~2,880 W m−1 K−1, intrinsic Young’s modulus of ~1.0 TPa and low doping density of ~2.2 × 1010 cm−2. The growth of each single-crystal graphene layer is realized by step edge-guided epitaxy on a high-index Ni surface, and continuous growth is enabled by the isothermal dissolution–diffusion–precipitation of carbon atoms driven by a chemical potential gradient between the two Ni surfaces. The isothermal growth enables the layers to grow at optimal conditions, without stacking disorders or stress gradients in the final graphite. Our findings provide a facile and scalable avenue for the synthesis of high-quality, thick vdW films for various applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continuous growth of the large epitaxial graphite film.
Fig. 2: Structural characterization of the epitaxial graphite film.
Fig. 3: Thermal, mechanical and electronic properties of the exfoliated graphene monolayer and few layers.
Fig. 4: Mechanism for the continuous epitaxial growth of the graphite film.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the findings of this study are available within the paper and Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  2. Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article  CAS  Google Scholar 

  3. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article  CAS  Google Scholar 

  4. Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

    Article  Google Scholar 

  5. Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

    Article  CAS  Google Scholar 

  6. Zhou, Q., Zheng, J., Onishi, S., Crommie, M. F. & Zettl, A. K. Graphene electrostatic microphone and ultrasonic radio. Proc. Natl Acad. Sci. USA 112, 8942–8946 (2015).

    Article  CAS  Google Scholar 

  7. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    Article  CAS  Google Scholar 

  8. Li, P. C. Preparation of single-crystal graphite from melts. Nature 192, 864–865 (1961).

    Article  CAS  Google Scholar 

  9. Austerma, S. B., Myron, S. M. & Wagner, J. W. Growth and characterization of graphite single crystals. Carbon 5, 551–557 (1967).

    Google Scholar 

  10. Inagaki, M. New Carbons: Control of Structure and Functions (Elsevier Science, 2000).

  11. Liu, S. L. & Loper, C. R. The formation of kish graphite. Carbon 29, 547–555 (1991).

    Article  CAS  Google Scholar 

  12. Chung, D. D. L. Review graphite. J. Mater. Sci. 37, 1475–1489 (2002).

    Article  CAS  Google Scholar 

  13. Karu, A. E. & Beer, M. Pyrolytic formation of highly crystalline graphite films. J. Appl. Phys. 37, 2179 (1966).

    Article  CAS  Google Scholar 

  14. Presland, A. E. & Walker, P. L. Growth of single-crystal graphite by pyrolysis of acetylene over metals. Carbon 7, 1–8 (1969).

    Article  CAS  Google Scholar 

  15. Shelton, J. C., Patil, H. R. & Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf. Sci. 43, 493–520 (1974).

    Article  CAS  Google Scholar 

  16. Derbyshire, F. J., Presland, A. E. B. & Trimm, D. L. Graphite formation by dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13, 111–113 (1975).

    Article  CAS  Google Scholar 

  17. Sun, Z. Z. et al. Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010).

    Article  CAS  Google Scholar 

  18. Wang, X. B. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905 (2013).

    Article  Google Scholar 

  19. Lehner, B. A. E. et al. Creation of conductive graphene materials by bacterial reduction using Shewanella oneidensis. ChemistryOpen 8, 888–895 (2019).

    Article  CAS  Google Scholar 

  20. Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020).

    Article  CAS  Google Scholar 

  21. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  22. Baraton, L. et al. On the mechanisms of precipitation of graphene on nickel thin films. Europhys. Lett. 96, 46003 (2011).

    Article  Google Scholar 

  23. Yan, Z. et al. Growth of bilayer graphene on insulating substrates. ACS Nano 5, 8187–8192 (2011).

    Article  CAS  Google Scholar 

  24. Kwak, J. et al. Near room-temperature synthesis of transfer-free graphene films. Nat. Commun. 3, 645 (2012).

    Article  Google Scholar 

  25. Liu, S. et al. Single-crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    Article  CAS  Google Scholar 

  26. Deokar, G. et al. Semi-transparent graphite films growth on Ni and their double-sided polymer-free transfer. Sci. Rep. 10, 14703 (2020).

    Article  CAS  Google Scholar 

  27. Shi, Z. Y. et al. Vapor-liquid-solid growth of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    Article  CAS  Google Scholar 

  28. Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  CAS  Google Scholar 

  29. Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016).

    Article  CAS  Google Scholar 

  30. Xu, X. Z. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    Article  CAS  Google Scholar 

  31. Lin, L. et al. Towards super-clean graphene. Nat. Commun. 10, 1912 (2019).

    Article  Google Scholar 

  32. Wu, M. H. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020).

    Article  CAS  Google Scholar 

  33. Meng, L. et al. Wrinkle networks in exfoliated multilayer graphene and other layered materials. Carbon 156, 24–30 (2020).

    Article  CAS  Google Scholar 

  34. Chatterjee, S. et al. Synthesis of highly oriented graphite films with a low wrinkle density and near-millimeter-scale lateral grains. Chem. Mater. 32, 3134–3143 (2020).

    Article  CAS  Google Scholar 

  35. Peng, L. et al. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 29, 1700589 (2017).

    Article  Google Scholar 

  36. Wang, B. et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order. Adv. Mater. 31, 1909039 (2019).

    Google Scholar 

  37. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  38. Jiang, J. W., Wang, J. S. & Li, B. W. Young’s modulus of graphene: a molecular dynamics study. Phys. Rev. B 80, 113405 (2009).

    Article  Google Scholar 

  39. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  40. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article  Google Scholar 

  41. Wang, D. X., Liu, Y. F., Sun, D. Y., Yuan, Q. H. & Ding, F. Thermodynamics and kinetics of graphene growth on Ni(111) and the origin of triangular-shaped graphene islands. J. Phys. Chem. C 122, 3334–3340 (2018).

    Article  CAS  Google Scholar 

  42. Mostaani, E., Drummond, N. D. & Fal’ko, V. I. Quantum Monte Carlo calculation of the binding energy of bilayer graphene. Phys. Rev. Lett. 115, 115501 (2015).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmuller, J. Efficiency of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  46. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  47. Lander, J. J., Kern, H. E. & Beach, A. L. Solubility and diffusion coefficient of carbon in nickel: reaction rates of nickel–carbon alloys with barium oxide. J. Appl. Phys. 23, 1305–1309 (1952).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Major Project of Basic and Applied Basic Research (2021B0301030002 (Enge Wang and Kaihui Liu)), the National Natural Science Foundation of China (52025023 (Kaihui Liu), 51991342 (Kaihui Liu), 52021006 (Kaihui Liu), 11888101 (Enge Wang), 92163206 (M.W.), 52172035 (M.W.), 52125307 (P.G.) and T2188101 (Kaihui Liu)), the Key R&D Programme of Guangdong Province (2019B010931001 (Kaihui Liu) and 2018B030327001 (D.Y.)), the National Key R&D Programme of China (2021YFB3200303 (Kaihui Liu), 2021YFA1400502 (M.W.)), the Strategic Priority Research Programme of Chinese Academy of Sciences (XDB33000000 (Kaihui Liu)), Beijing Natural Science Foundation (JQ19004 (Kaihui Liu)), the Tencent Foundation through the XPLORER PRIZE (Kaihui Liu) and the Institute for Basic Science of South Korea (IBS-R019-D1 (F.D.)). We acknowledge the use of the IBS-CMCM high-performance computing system simulator.

Author information

Authors and Affiliations

Authors

Contributions

Kaihui Liu and Enge Wang supervised the project. Kaihui Liu conceived the experiments. F.D., Enge Wang and Kaihui Liu developed the growth mechanism. D.Y. organized the structural characterization. Zhibin Zhang and M.D. synthesized the epitaxial graphite film. T.C. and F.D. performed the theoretical analysis. X.B., Zhibin Zhang, R.Q., M.Z., X.L., F.L., Zhihong Zhang, D.Z., C.L., M.W., X.W. and P.G. performed the SEM, TEM, EBSD and X-ray diffraction experiments. Zhibin Zhang, M.D., Y.F. and Kehai Liu performed the thermal conductivity measurements. Kai Liu, Q.L., Enze Wang, Y.S. and S.Z. performed the mechanical experiments. Y.Z. and M.L. performed the electronic transport experiment. Q.Z., Zhibin Zhang, H.M. and C.F. performed the chlorination experiment. All authors discussed the results and contributed to writing the paper.

Corresponding authors

Correspondence to Dapeng Yu, Feng Ding, Enge Wang or Kaihui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Maria Losurdo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1 and 2.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ding, M., Cheng, T. et al. Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel. Nat. Nanotechnol. 17, 1258–1264 (2022). https://doi.org/10.1038/s41565-022-01230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01230-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing