Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning

This article has been updated

Abstract

Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions—for example, in a lipid bilayer and at room temperature (0–35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the (H)NH correlation experiment pulse sequence.
Figure 2: (H)NH correlation spectra of 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 3: Schematic representation of the (H)CANH correlation experiment pulse sequence.
Figure 4: 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 5: Schematic representation of the (H)CONH correlation experiment pulse sequence.
Figure 6: 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 7: Schematic representation of the (H)CACO(N)H correlation experiment pulse sequence.
Figure 8: 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 9: Schematic representation of the (H)COCA(N)H correlation experiment pulse sequence.
Figure 10: 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 11: Schematic representation of the (H)CBCA(N)H correlation experiment pulse sequence.
Figure 12: 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 13: 100% back-protonated [2H, 13C, 15N]-labeled MxiH needles (83 aa) in a 1.9-mm rotor at 40 kHz MAS.
Figure 14: Comparison of different water suppression techniques.
Figure 15: Schematic diagram of the magnetization transfers in the experiments described in this protocol.
Figure 16: Exemplified 'backbone walk' for chemical shift assignment using a deuterated and 1H-back-exchanged [2H, 13C, 15N]-labeled MxiH needle sample (83 aa) under ultrafast MAS conditions.

Similar content being viewed by others

Change history

  • 27 March 2017

    In the supplementary information originally posted online, the file: Supplementary Data 1–10 was not attached. The error has been corrected in the HTML and PDF versions as of 27 March 2017.

References

  1. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Moraes, I., Evans, G., Sanchez-Weatherby, J., Newstead, S. & Stewart, P.D. Membrane protein structure determination - the next generation. Biochim. Biophys. Acta 1838, 78–87 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ostermeier, C. & Michel, H. Crystallization of membrane proteins. Curr. Opin. Struct. Biol. 7, 697–701 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. Hwang, P.M. & Kay, L.E. Solution structure and dynamics of integral membrane proteins by NMR: a case study involving the enzyme PagP. Methods Enzymol. 394, 335–350 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Sanders, C.R. & Sonnichsen, F. Solution NMR of membrane proteins: practice and challenges. Magn. Reson. Chem. 44, S24–S40 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Tamm, L.K. & Liang, B.Y. NMR of membrane proteins in solution. Prog. Nucl. Magn. Reson. Spectrosc. 48, 201–210 (2006).

    Article  CAS  Google Scholar 

  7. Zhao, X. Protein structure determination by solid-state NMR. Top. Curr. Chem. 326, 187–213 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Naito, A. & Kawamura, I. Solid-state NMR as a method to reveal structure and membrane-interaction of amyloidogenic proteins and peptides. Biochim. Biophys. Acta 1768, 1900–1912 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Zech, S.G., Wand, A.J. & McDermott, A.E. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J. Am. Chem. Soc. 127, 8618–8626 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Lange, A. et al. A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 44, 2089–2092 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Patching, S.G. Solid-state NMR structures of integral membrane proteins. Mol. Membr. Biol. 32, 156–178 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Baker, L.A. et al. Magic-angle-spinning solid-state NMR of membrane proteins. Methods Enzymol. 557, 307–328 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Brown, L.S. & Ladizhansky, V. Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci. 24, 1333–1346 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang, S. & Ladizhansky, V. Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog. Nucl. Magn. Reson. Spectrosc. 82, 1–26 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. Loquet, A., Habenstein, B. & Lange, A. Structural investigations of molecular machines by solid-state NMR. Acc. Chem. Res. 46, 2070–2079 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Sengupta, I., Nadaud, P.S. & Jaroniec, C.P. Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc. Chem. Res. 46, 2117–2126 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Lewandowski, J.R., Halse, M.E., Blackledge, M. & Emsley, L. Protein dynamics. Direct observation of hierarchical protein dynamics. Science 348, 578–581 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Lamley, J.M., Oster, C., Stevens, R.A. & Lewandowski, J.R. Intermolecular interactions and protein dynamics by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 54, 15374–15378 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lamley, J.M. et al. Solid-state NMR of a protein in a precipitated complex with a full-length antibody. J. Am. Chem. Soc. 136, 16800–16806 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Lewandowski, J.R. Advances in solid-state relaxation methodology for probing site-specific protein dynamics. Acc. Chem. Res. 46, 2018–2027 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Schanda, P. & Ernst, M. Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. Prog. Nucl. Magn. Reson. Spectrosc. 96, 1–46 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ma, P.X. et al. Probing transient conformational states of proteins by solid-state R(1ρ) relaxation-dispersion NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 53, 4312–4317 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tollinger, M., Sivertsen, A.C., Meier, B.H., Ernst, M. & Schanda, P. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy. J. Am. Chem. Soc. 134, 14800–14807 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tycko, R. Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62, 279–299 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hong, M. Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. J. Biomol. NMR 15, 1–14 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. Vijayan, V. et al. Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning. Chemphyschem 10, 2205–2208 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Fung, B.M., Khitrin, A.K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. Loquet, A. et al. Atomic model of the type III secretion system needle. Nature 486, 276–279 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fricke, P., Chevelkov, V., Shi, C. & Lange, A. Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes. J. Magn. Reson. 253, 2–9 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Ward, M.E. et al. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins. J. Biomol. NMR 63, 375–388 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Ishii, Y. & Tycko, R. Sensitivity enhancement in solid state 15N NMR by indirect detection with high-speed magic angle spinning. J. Magn. Reson. 142, 199–204 (2000).

    Article  PubMed  CAS  Google Scholar 

  32. Chevelkov, V., Rehbein, K., Diehl, A. & Reif, B. Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed. Engl. 45, 3878–3881 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. McDermott, A.E., Creuzet, F.J., Kolbert, A.C. & Griffin, R.G. High-resolution magic-angle-spinning NMR spectra of protons in deuterated solids. J. Magn. Reson. 98, 408–413 (1992).

    CAS  Google Scholar 

  34. Brunner, E., Freude, D., Gerstein, B.C. & Pfeifer, H. Residual linewidths of NMR spectra of spin-1/2 systems under magic-angle spinning. J. Magn. Reson. 90, 90–99 (1990).

    CAS  Google Scholar 

  35. Waugh, J.S., Huber, L.M. & Haeberle, U. Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182 (1968).

    Article  CAS  Google Scholar 

  36. Chevelkov, V. et al. 1H detection in MAS solid-state NMR spectroscopy of biomacromolecules employing pulsed field gradients for residual solvent suppression. J. Am. Chem. Soc. 125, 7788–7789 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Paulson, E.K. et al. Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J. Am. Chem. Soc. 125, 15831–15836 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. Ward, M.E. et al. Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J. Am. Chem. Soc. 133, 17434–17443 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Agarwal, V. et al. De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 53, 12253–12256 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. Zhou, D.H. et al. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J. Am. Chem. Soc. 129, 11791–11801 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Marchetti, A. et al. Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 51, 10756–10759 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Xiang, S.Q., Biernat, J., Mandelkow, E., Becker, S. & Linser, R. Backbone assignment for minimal protein amounts of low structural homogeneity in the absence of deuteration. Chem. Commun. 52, 4002–4005 (2016).

    Article  CAS  Google Scholar 

  43. Weingarth, M. et al. Quantitative analysis of the water occupancy around the selectivity filter of a K+ channel in different gating modes. J. Am. Chem. Soc. 136, 2000–2007 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Knight, M.J. et al. Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 50, 11697–11701 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Zhou, D.H. et al. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J. Biomol. NMR 54, 291–305 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chevelkov, V. et al. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. J. Magn. Reson. 242, 180–188 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Verel, R., Ernst, M. & Meier, B.H. Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J. Magn. Reson. 150, 81–99 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. Nielsen, N.C., Bildsoe, H., Jakobsen, H.J. & Levitt, M.H. Double-quantum homonuclear rotary resonance - efficient dipolar recovery in magic-angle-spinning nuclear-magnetic-resonance. J. Chem. Phys. 101, 1805–1812 (1994).

    Article  CAS  Google Scholar 

  49. Shi, C. et al. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv. 1, e1501087 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barbet-Massin, E. et al. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J. Am. Chem. Soc. 136, 12489–12497 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Linser, R., Fink, U. & Reif, B. Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J. Magn. Reson. 193, 89–93 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. Xiang, S., Chevelkov, V., Becker, S. & Lange, A. Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data. J. Biomol. NMR 60, 85–90 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Akbey, U. et al. Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J. Biomol. NMR 46, 67–73 (2010).

    Article  PubMed  CAS  Google Scholar 

  54. Nieuwkoop, A.J. et al. Sensitivity and resolution of proton detected spectra of a deuterated protein at 40 and 60 kHz magic-angle-spinning. J. Biomol. NMR 61, 161–171 (2015).

    Article  PubMed  CAS  Google Scholar 

  55. Mance, D. et al. An efficient labelling approach to harness backbone and side-chain protons in H-1-detected solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 54, 15799–15803 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wishart, D.S. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. Spectrosc. 58, 62–87 (2011).

    Article  PubMed  CAS  Google Scholar 

  57. Shaka, A.J., Keeler, J., Frenkiel, T. & Freeman, R. An improved sequence for broad-band decoupling - WALTZ-16. J. Magn. Reson. 52, 335–338 (1983).

    CAS  Google Scholar 

  58. Shaka, A.J., Keeler, J. & Freeman, R. Evaluation of a new broad-band decoupling sequence - WALTZ-16. J. Magn. Reson. 53, 313–340 (1983).

    CAS  Google Scholar 

  59. Zhou, D.H. & Rienstra, C.M. High-performance solvent suppression for proton detected solid-state NMR. J. Magn. Reson. 192, 167–172 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Baldus, M., Petkova, A.T., Herzfeld, J. & Griffin, R.G. Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 95, 1197–1207 (1998).

    Article  CAS  Google Scholar 

  61. Emsley, L. & Bodenhausen, G. Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J. Magn. Reson. 97, 135–148 (1992).

    CAS  Google Scholar 

  62. Hu, K.N., Qiang, W. & Tycko, R. A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers. J. Biomol. NMR 50, 267–276 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pines, A., Waugh, J.S. & Gibby, M.G. Proton-enhanced nuclear induction spectroscopy - method for high-resolution NMR of dilute spins in solids. J. Chem. Phys. 56, 1776–1777 (1972).

    Article  CAS  Google Scholar 

  64. Morris, G.A. & Freeman, R. Enhancement of nuclear magnetic-resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760–762 (1979).

    Article  CAS  Google Scholar 

  65. Biological Magnetic Resonance Data Bank (BMRB). Full chemical shift statistics. Accessed 2 September 2016, http://www.bmrb.wisc.edu/ref_info/statsel.htm.

  66. Böckmann, A. et al. Characterization of different water pools in solid-state NMR protein samples. J. Biomol. NMR 45, 319–327 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Morcombe, C.R. & Zilm, K.W. Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 162, 479–486 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Lange and E. Ousby for valuable discussions. This work was supported by the Leibniz-Institut für Molekulare Pharmakologie, the Max Planck Society, the European Research Council (ERC Starting Grant to A.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft; Emmy Noether Fellowship to A.L.) and the Fonds der Chemischen Industrie (Kekulé Scholarship to P.F.).

Author information

Authors and Affiliations

Authors

Contributions

P.F., V.C. and M.Z. implemented the protocol; K.G. and S.B. produced the protein sample; V.C. and A.L. designed the research; P.F. and A.L. wrote the manuscript; and all authors commented on the manuscript.

Corresponding author

Correspondence to Veniamin Chevelkov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Data 1–10 (ZIP 14 kb)

Supplementary Information

Supplementary Data 1–10 (PDF 627 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fricke, P., Chevelkov, V., Zinke, M. et al. Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 12, 764–782 (2017). https://doi.org/10.1038/nprot.2016.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.190

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing