Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency-agile dual-comb spectroscopy

Abstract

Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s−1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for dual-comb spectroscopy with a single laser diode.
Figure 2: Low-resolution optical spectra at the input and output of the normal-dispersion optical fibre.
Figure 3: Experimental interferogram and spectra with resolved comb lines.
Figure 4: Portions of experimental dual-comb molecular spectra.
Figure 5: Short measurement times and spectroscopic validation.

Similar content being viewed by others

References

  1. Truong, G.-W. et al. Frequency-agile, rapid scanning spectroscopy. Nature Photon. 7, 532–534 (2013).

    Article  ADS  Google Scholar 

  2. Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nature Photon. 7, 102–112 (2013).

    Article  ADS  Google Scholar 

  3. Kranendonk, L. A. et al. High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. Opt. Express 15, 15115–15128 (2007).

    Article  ADS  Google Scholar 

  4. Hänsch, T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    Article  ADS  Google Scholar 

  5. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  6. Ideguchi, T. et al. Adaptive real-time dual-comb spectroscopy. Nature Commun. 5, 3375 (2014).

    Article  ADS  Google Scholar 

  7. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    Article  ADS  Google Scholar 

  8. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2010).

    Article  ADS  Google Scholar 

  9. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  10. Baumann, E. et al. Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).

    Article  ADS  Google Scholar 

  11. Villares, G., Hugi, A., Blaser, B. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Commun. 5, 5192 (2014).

    Article  ADS  Google Scholar 

  12. Long, D. A. et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt. Lett. 39, 2688–2690 (2014).

    Article  ADS  Google Scholar 

  13. Martin-Mateos, P., Ruiz-Llata, M., Posada-Roman, J. & Acedo, P. Dual-comb architecture for fast spectroscopic measurements and spectral characterization. IEEE Photon. Technol. Lett. 27, 1309–1312 (2015).

    Article  ADS  Google Scholar 

  14. Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 3, 99–102 (2009).

    Article  ADS  Google Scholar 

  15. Siciliani de Cumis, M. et al. Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy. Phys. Rev. A 91, 012505 (2015).

    Article  ADS  Google Scholar 

  16. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  17. Thorpe, M. J. et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  Google Scholar 

  18. Kourogi, M., Nakagawa, K. & Ohtsu, M. Wide span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29, 2693–2701 (1993).

    Article  ADS  Google Scholar 

  19. Lee, S.-J., Widiyatmoko, B., Kourogi, M. & Ohtsu, M. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn J. Appl. Phys. 40, L878 (2001).

    Article  ADS  Google Scholar 

  20. Finot, C., Kibler, B., Provost, L. & Wabnitz, S. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008).

    Article  ADS  Google Scholar 

  21. Agrawal, G. P. Nonlinear Fiber Optics 5th edn (Academic, 2013).

    MATH  Google Scholar 

  22. Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (Wiley-Interscience, 2007).

    Book  Google Scholar 

  23. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. S. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    Article  ADS  Google Scholar 

  24. Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectr. Rad. Transfer 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  25. Gilbert, S. L. & Swann, W. C. Acetylene 12C2H2 Absorption Reference for 1510 nm to 1540 nm Wavelength Calibration—SRM 2517a (Special Publication 260-133, National Institute of Standards and Technology, 2001).

    Google Scholar 

  26. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  27. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Controllable spatiotemporal nonlinear effects in multimode fibres. Nature Photon. 9, 306–310 (2015).

    Article  ADS  Google Scholar 

  28. Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Self-similarity in ultrafast nonlinear optics. Nature Phys. 3, 597–603 (2007).

    Article  ADS  Google Scholar 

  29. Wu, R., Torres-Company, V., Leaird, D. E. & Weiner, A. M. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express 21, 6045–6052 (2013).

    Article  ADS  Google Scholar 

  30. Torres-Company, V. & Weiner, A. M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon. Rev. 8, 368–393 (2014).

    Article  ADS  Google Scholar 

  31. Myslivets, E. et al. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt. Express 20, 3331–3344 (2012).

    Article  ADS  Google Scholar 

  32. Kuo, B. P.-P. et al. Wideband parametric frequency comb as coherent optical carrier. J. Lightw. Technol. 31, 3414–3419 (2013).

    Article  ADS  Google Scholar 

  33. Ataie, V. et al. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping. J. Lightw. Technol. 32, 840–846 (2014).

    Article  ADS  Google Scholar 

  34. Temprana, E. et al. Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation. Opt. Express 22, 6822–6828 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Fatome, G. Fanjoux, C. Finot and P. Morin for discussions and advice. The authors acknowledge financial support from IXCORE Fondation pour la Recherche, PARI PHOTCOM Région Bourgogne, Labex ACTION, the French National Research Agency (ANR-12-BS04-0011 OPTIROC), FP7-ERC-Multicomb (Grant 267854) and the Munich Center for Advanced Photonics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this work.

Corresponding authors

Correspondence to Guy Millot or Nathalie Picqué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millot, G., Pitois, S., Yan, M. et al. Frequency-agile dual-comb spectroscopy. Nature Photon 10, 27–30 (2016). https://doi.org/10.1038/nphoton.2015.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing